
mDep: Mutation-Based Dependency Generation
for Precise Taint Analysis on Android

Native Code
Cong Sun ,Member, IEEE, Yuwan Ma, Dongrui Zeng, Gang Tan,Member, IEEE, Siqi Ma, and Yafei Wu

Abstract—The existence of native code in Android apps plays an important role in triggering inconspicuous propagation of secrets and

circumventing malware detection. However, the state-of-the-art information-flow analysis tools for Android apps all have limited

capabilities of analyzing native code. Due to the complexity of binary-level static analysis, most static analyzers choose to build

conservative models for a selected portion of native code. Though the recent inter-language analysis improves the capability of tracking

information flow in native code, it is still far from attaining similar effectiveness of the state-of-the-art information-flow analyzers that

focus on non-native Java methods. To overcome the above constraints, we propose a new analysis framework, mDep, to detect

sensitive information flows of the Android apps containing native code. In this framework, we combine a control-flow based static binary

analysis with a mutation-based dynamic analysis to model the tainting behaviors of native code in the apps. Based on the result of the

analyses, mDep conducts a stub generation for the related native functions to facilitate the state-of-the-art analyzer DroidSafe with fine-

grained tainting behavior summaries of native code. The experimental results show that our framework is competitive on the accuracy,

and effective in analyzing the information flows in real-world apps and malware compared with the state-of-the-art inter-language static

analysis.

Index Terms—Android, information flow analysis, java native interface, static analysis

Ç

1 INTRODUCTION

NATIVE code is widely embedded in Android apps to ben-
efit code reuse and processor-intensive tasks, e.g., video

processing and game graphics engine. Recent statistics
showed that around 36%-40% of regular android apps make
use of native code [1], [2]. However, native code is also vul-
nerable to the exploitations by the recent Android malware
because of its “black-box” feature to escape traditional static
analyses of malicious behaviors. For instance, native code
can be used to hide sensitive data or code stub [3], [4], con-
duct full-native code obfuscation [5], tamper with Dalvik’s
data memory [6], or circumvent the state-of-the-art static
data-flow analysis [2]. In these forms of malicious exploits,
leaking sensitive information is one of the major threats con-
ducted by native code [2], [7], [8]. Specifying the data-flow

behaviors of native code becomes the key step to identify
such kind of threats.

To model the tainting behaviors of native code, the
dynamic approaches [9], [10] applied conservative strate-
gies to propagate taints through either JNI method calls or
instructions at the machine-code level. On the other hand,
state-of-the-art static information flow analyses on Android
apps [11], [12], [13], [14] only inspect data flows at the byte-
code level but fail to analyze the native code in the apps.
The static analysis usually builds summaries to specify the
data-flow behaviors for only a limited number of native
methods. For example, the native call handler of FlowDroid
[11] hard-codes the models of taint propagation for several
system-defined native methods. If the input is tainted before
such a native call, the taint is propagated to all the argu-
ments and its return value. DroidSafe [13] uses a manually
crafted comprehensive execution model, called accurate
analysis stubs, to specify runtime behaviors including data
flow and object instantiation of native code in the Android
framework. This model over-approximates the taint propa-
gation of standard Android native libraries, but fails to char-
acterize the tainting behaviors of user-defined or third-party
native code. The potential propagations passing through
these native codes are simply cut off by the model. Stub-
Droid [15] automatically summarizes the tainting behaviors
of Android framework libraries in bytecode to improve the
efficiency of data-flow analysis. However, the summaries of
native code are still built manually.

In general, the vulnerable behaviors of native code that
threaten the information flow security can be classified into
two types. First, on the native side, the binaries of JNI

� Cong Sun, Yuwan Ma, and Yafei Wu are with the School of Cyber Engi-
neering, Xidian University, Xi’an 710071, China.
E-mail: suncong@xidian.edu.cn, {18229047585, 18291880308}@163.com.

� Dongrui Zeng is with Pennsylvania State University, State College, PA
16801 USA, and also with Palo Alto Networks, Inc., Santa Clara, CA
95054 USA. E-mail: dzeng@paloaltonetworks.com.

� Gang Tan is with Pennsylvania State University, State College, PA 16801
USA. E-mail: gtan@psu.edu.

� Siqi Ma is with the University of New South Wales, Canberra, ACT 2612,
Australia. E-mail: siqi.ma@adfa.edu.au.

Manuscript received 6 Aug. 2020; revised 22 Feb. 2022; accepted 25 Feb. 2022.
Date of publication 3 Mar. 2022; date of current version 14 Mar. 2023.
This work was supported in part by the National Natural Science Foundation
of China under Grant 61872279, and the Key Research and Development Pro-
gram of Shaanxi under Grant 2020GY-004.
(Corresponding author: Cong Sun.)
Digital Object Identifier no. 10.1109/TDSC.2022.3155693

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023 1461

https://orcid.org/0000-0001-9116-2694
https://orcid.org/0000-0001-9116-2694
https://orcid.org/0000-0001-9116-2694
https://orcid.org/0000-0001-9116-2694
https://orcid.org/0000-0001-9116-2694
mailto:suncong@xidian.edu.cn
mailto:18229047585@163.com
mailto:18291880308@163.com
mailto:dzeng@paloaltonetworks.com
mailto:gtan@psu.edu
mailto:siqi.ma@adfa.edu.au

functions may invoke sources or sinks to track or release
sensitive data, which we call type-I vulnerabilities. The sour-
ces and sinks may be either Java methods or native library
functions. Second, there are many cases that the leakages
arising on the bytecode are triggered by some inconspicu-
ous propagations made by native code, which we define as
type-II vulnerabilities. White-box analysis of the native code
may help identify such vulnerabilities. Lantz et al. [16] pro-
posed identifying sources and sinks called in native libraries
by traversing the program dependency graph (PDG) of
native function constructed with IDA. They focused on
type-I vulnerabilities. JN-SAF [2] is the first approach to
capturing the inter-language data flows. A summary-based
bottom-up approach based on [17] is used to perform flow-
and context-sensitive inter-language data-flow analysis,
whose summaries are generated to unify the heap manipu-
lations of both Java bytecode and native code. Although
addressing both type-I and type-II vulnerabilities, the analy-
sis of native code is still not precise to capture the taint
propagations conducted by native code.

To facilitate the static information flow analysis with pre-
cise specifications of inconspicuous sensitive data flows in
native code, we propose a hybrid approach to automatically
build more precise tainting behavior models for the native
code of Android apps. First, we develop a lightweight static
binary analysis to deal with type-I vulnerabilities and
abstract the tainting effects of natively called sources/sinks
to the bytecode. Then, we leverage the principle of differen-
tial fuzzing [18] to trigger argument mutations over self-
composed invocations of the native method and identify the
dependencies between arguments and return values of the
native method. Based on the dependency relations, we pro-
pose automatically generating stubs to improve the preci-
sion of the Android Device Implementation (ADI) model of
DroidSafe [13]. The newly generated code stubs precisely
model the data-flow effects of user-defined or third-party
native code, and provide mechanisms for the analyzer to
identify type-II vulnerabilities. We highlight our contribu-
tions as follows:

� We propose mDep, an information flow analysis
framework tightly integrated with DroidSafe [13] to
identify sensitive data flows in the native code of
apps. It combines a control-flow based static binary
analysis and a mutation-based dynamic analysis to
specify the tainting effects of the native code in the
bytecode of app.

� The stub generation procedure uses mutation-based
dependencies to build precise data-flow models for
the native code. The derived semantics of the native
code are merged with the ADI model of DroidSafe to
implement a more precise information flow analysis.

� The experimental results show that our information
flow analysis framework is competitive on accuracy
compared with the state-of-the-art framework JN-
SAF [2], and demonstrate the effectiveness in detect-
ing sensitive information flows in real-world apps.

This paper is organized as follows. We first present a moti-
vating example in Section 2. Section 3 describes the design of
our approach. Section 4 discusses the implementation issues.
The evaluation and security findings are presented in Section 5.

Section 6 makes discussions. Section 7 presents the related
works andwe conclude this paper in Section 8.

2 MOTIVATING EXAMPLE

In this section, we motivate our solution by presenting an
example (in Fig. 1) to show the deficiency of two existing
state-of-the-art information flow analyzers DroidSafe [13]
and JN-SAF [2].

The example application uses TelephonyManager to
get the local IMEI when the user operates on a Spinner com-
ponent. The IMEI is delivered to the native method propa-

gateData through an object of Data, i.e.,�1!�2 , where an
error-prone instance of Eavesdropper and a GUI option
choice are also passed. From the definition of Eaves-

dropper we cannot identify malicious behavior except its
field s is sent to some phone in text message. However, in
the native function of propagateData, the IMEI held by

Fig. 1. Motivating example.

1462 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

Data object is assigned to the field s of Eavesdropper

under certain input, i.e., choice is false (0 in native
code), i.e.,�3!�4 . Then, after returning to the Java side, the
IMEI is sent to another phone in method vulnerableMe-

thod through text message, i.e., �4!�6!�7 . On the other
hand, if the input choice is true, the IMEI will be printed
to log.

To analyze the information flows of this app, we assume
TelephonyManager.getDeviceId() is the sensitive
source. SmsManager.sendTextMessage() and Log.v

() are public sinks. DroidSafe can only build a mock imple-
mentation for the native method propagateData, which
will cut off the dependency between Data and Eaves-

dropper on the native side. Consequently, it can only
detect a sensitive flow�1!�5 , but fail to detect another flow�1!�2!�3!�4!�6!�7 causing type-II vulnerability. Mean-
while, possible implementation limitations of JN-SAF may
have caused heap-manipulation summary missing, while
applying the summary of vulnerableMethod() to the
native side of propagateData in the example, resulting in
only detecting�1!�5 . In contrast, we provide an automated
approach to figure out native-side dependencies and gener-
ate informative and precise summaries for native methods.
Then the static information flow analysis can better bridge
the contexts before and after the native calls and detect both
sensitive flows in this example.

3 DESIGN OF mDEP

In this section, we describe the design of our information
flow analysis framework of Android apps with the ability
to detect type-I and type-II vulnerabilities caused by native
code.

3.1 Overview

We show the framework of mDep in Fig. 2. First, mDep loads
the shared object files of each app and conducts a light-
weight static binary analysis based on IDA [19]. The binary
analysis parses the sequences of JNI function calls in the
body of each native function. Based on the pattern of JNI
function call sequences, we find the Java APIs called in
native code. Then mDep checks if the found method call is a
source or a sink on the control-flow graph of the native
methods. If so, we conservatively identify such a control-
flow relation as a type-I vulnerability. We then update the
sources or sinks of DroidSafe, over-approximate the seman-
tics of natively called source to the Java side, and deliver
such semantics to the stub generation procedure.

Then, we develop a mutation-based dependency genera-
tion to build all the data dependencies between the argu-
ments and the return value of each native method used in
the app. To reach a reasonable granularity, the fields of

arguments and returned object on different depths are
considered.

Third, mDep generates the code stubs in Jimple automati-
cally for the user-defined or third-party native methods
based on the data dependencies as well as the taint seman-
tics of the natively called source. The stubs extend the ADI
model of DroidSafe and provide the model for the incon-
spicuous taint propagation behaviors of native functions,
which is critical for the DroidSafe engine to detect the type-
II leakages.

3.2 Lightweight Static Binary Analysis

To deal with the type-I vulnerability that the sources or
sinks are invoked in native code, we developed a light-
weight control-flow based binary analysis with IDA. The
principle of our analysis is to use the native method itself as
a proxy to represent the source or sink called by the corre-
sponding native function. Through updating the source or
sink list, the information flow analysis can then detect type-
I vulnerabilities. The steps of binary analysis are as follow.

1. We retrieve the code section of shared object files,
find the calls to the specific JNI functions, e.g.,
CallXXXMethod, and decide if the pattern of
related instructions is calling some Java source or
sink method. We also find the calls to native sources
and sinks which are some native library functions,
e.g., __android_log_print.

2. From the call sites of these retrieved sources and
sinks, we traverse backward along the binary-level
control-flow graph to find the native functions that
use at least one of these sources and sinks.

3. For each of the identified native functions, if there is
a corresponding native method declared at the Java
side of the app, we find a coarse-grained correlation
representing the usage of source/sink by the native
method. Then we add the native method into the
source or sink list of DroidSafe.

To map the native function with its native method on the
Java side, we have to resolve the dynamic function registra-
tions conducted by calling RegisterNatives in JNI_On-

Load. A primary argument of RegisterNatives is a list
of JNINativeMethod structures usually stored in the data
sections. For the initial address addr of each native function
that uses source or sink, we search for all the occurrences of
addr in the data sections, take this addr as the third field of
JNINativeMethod structure and resolve the first and sec-
ond field of address that point to the string of native method
name and native method signature respectively. Based on
the resolved method name and method signature, we
update the source or sink list of DroidSafe.

We take into account the return type of the natively called
source to build the taint semantics for the proxy source
method added into the source list, which will then be merged
with the data dependencies derived in Section 3.3 to construct
the code stub of the native method. The strategy is, if the
return type of natively called source is T , then for the return
value and output arguments of the proxy native method, we
search for and taint all their fields with type T 0 compatible
with T . To overcome the constraint that DroidSafe can only
taint the returned object and the output arguments of proxy

Fig. 2. Framework of mDep.

SUN ETAL.: mDEP: MUTATION-BASED DEPENDENCYGENERATION FOR PRECISE TAINTANALYSIS ON ANDROID NATIVE... 1463

source method instead of their fields, we build a correspond-
ing Javawrappermethod to first call the proxy sourcemethod
and then taint all the related fields of its return object or out-
put arguments. We substitute the call to the proxy source
methodwith a call to this wrappermethod.

3.3 Mutation-Based Dependency Generation

We generalize the idea of differential fuzzing [18] and self-
composition [20] to design a dynamic approach for generat-
ing the dependency relations between arguments and return
values of nativemethods. The idea is to treat a nativemethod
as a black-box system and compare two executions of the
system with inputs mutated to observe differences in out-
puts. As a result, we can infer the outputs that are changed
should have dependency on the inputs that are mutated. For
a nativemethod, we consider the arguments with String or
primitive types as input, the arguments referencing non-
primitive-type objects as both input and output, and the
return value as output. In detail, we iteratively mutate each
input argument and observe the outputs. Since only one
input is mutated in each iteration, if the coupled outputs of
the two executions are different, the difference is guaranteed
to be caused by the input change, which demonstrates the
dependency relation between the mutated input and the
altered output. In practice, by mutating each input argument
multiple times, most of the paths are covered, and the depen-
dencies between inputs and outputs are usually found.

Algorithm 1.mutateT ðref; ref 0Þ
1 if isPrimitiveðT Þ_immutableNonPrimitiveðT Þ then
2 ref 0 random value/object;
3 else if T ¼ T 0½� then
4 Alloc space for ref 0, randomly select i 2 ½0; ref:lenÞ;
5 mutateT 0 ðref ½i�; ref 0½i�Þ;
6 for k 2 ½0; ref:lenÞ ^ k 6¼ i do
7 cloneT 0 ðref ½k�; ref 0½k�Þ;
8 else /* T is mutable non-primitive type * /

9 Alloc object space for ref 0;
10 Randomly select field ðfdi : TiÞ 2 T ;
11 mutateTiðref:fdi; ref 0:fdiÞ;
12 for ðfdk : TkÞ 2 T ^ k 6¼ i do
13 cloneTkðref:fdk; ref 0:fdkÞ;

To simplify the discussion of our algorithm, we define an
operation unit as two executions of one native method taking
different inputs. For implementation simplicity to avoid
possible parallel executions, in each operation unit, we take
the principle of self-composition to compose a call to a
native method sequentially with another call to the same
native method. For the two calls to the same native method
in one operation unit, we need to make sure their non-prim-
itive-type arguments and return values are stored in distin-
guished memory locations so that the second execution
would not override the first execution’s output. Before we
demonstrate the dependency generation algorithm, we first
define several predicates to clarify the atomic operations
used in this algorithm.

1. cloneT ðref; ref 0Þ: Deep clone the object referenced by
ref , return the reference ref 0 to the newly generated
object. Both objects have type T .

2. cmpT ðref; ref 0Þ: Deep compare the two objects refer-
enced by ref and ref 0, both having type T . If T ¼
T 0½�, the length of array should also be compared in
addition to the element comparisons.

3. mutateT ðref; ref 0Þ: Similar to the procedure of
cloneT ðref; ref 0Þ, except that whenever constructing
an object for ref 0 or some field of the new object, we
feed randomized primitive-type value or object with
immutable non-primitive types, or recursively apply
the mutation operation on mutable non-primitive-
type fields or some array element. The procedure is
defined in Algorithm 1.

Fig. 3 illustrates the variation on the memory (stack and
heap) when executing one operation unit of our depen-
dency generation approach. P and P ½�� are both the execu-
tion of the same native method. � is a renaming function
that renames the arguments of P syntactically to the new
arguments used by P ½��. We compose P and P ½�� sequen-
tially as P ;P ½��. Then there are four states of memory in
Fig. 3: 1) before calling P ;P ½��, 2) calling P , 3) calling P ½��, and
4) after calling P ;P ½��.

In each operation unit, P first takes the prepared argu-
ments, and then P ½�� takes the cloned arguments as well as
only one mutated argument. Each non-primitive-type
argument of P ½�� holds a reference to the object generated
by clone or mutate. For example, for the argument ev of
propagateData() in Fig. 1, there should be a renamed
argument �ðevÞ which references the object generated by
cloneEavesdropperðev; �ðevÞÞ or mutateEavesdropperðev; �ðevÞÞ.
The instance of MainActivity delivered through the
implicit argument this should also be deeply cloned. We
also store its reference onto the stack frame. After the
sequential execution of the two calls, we apply cmpT to com-
pare the effect of P and P ½�� on each pair of output argu-
ments and return values. When the objects referenced by a
pair of arguments, e.g., the jth argument of P and P ½�� in
Fig. 3, differentiate according to the result of cmpT , the
diversity should either be caused by the mutation on the ith
argument, or by some indeterminate input from the native

Fig. 3. Principle of dependency generation.

1464 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

side. Then we build the dependency between the ith argu-
ment and the jth argument conservatively. We have also
recorded the object fields that lead to the mutation of input
and the diversity of output, e.g., in Fig. 3, fds is a field of the
ith argument with type T , and fdt is a field of the jth argu-
ment with type T 0. We finally generate the dependency
bridging these fields, e.g., T@i:fds ! T 0@j:fdt in Fig. 3. The
depth of object fields is configurable to support different
granularity of the dependency relation.

The algorithm of the mutation-based dependency genera-
tion is given in Algorithm 2. This algorithm assumes the
instance native method mtd has return type t. For each input
argument under mutation, we repeatedly run fresh operation
units for BOUND times to reduce the false negatives of this
dynamic approach. For the example in Fig. 1, we use this algo-
rithm and derive the following dependency relation f
hEavesdropper@1:s; Data@0:si; hEavesdropper@1:s; Boolean
@2ig. Developing the dynamic analysis in this section as an
app is critical to make the native code in shared object files
runnable in the analysis, as stated in Section 4.

Algorithm 2.Mutation-Based Dependency Generation

Input: native method t T0:mtdðT1 arg1; . . . ; Tn argnÞ
Output: dependency relation D

1 D ;;
2 for i ¼ 0 to n do
3 for time ¼ 0 to BOUND do
4 for k ¼ 0 to n do
5 Construct value/object randomly for argk;
6 if k ¼ i then
7 mutateTkðargk; �ðargkÞÞ;
8 else if isPrimitiveðTkÞ then
9 �ðargkÞ argk;
10 else
11 cloneTkðargk; �ðargkÞÞ;
12 ret arg0:mtdðarg1; . . . ; argnÞ;
13 ret0 �ðarg0Þ:mtdð�ðarg1Þ; . . . ; �ðargnÞÞ;
14 for ðk ¼ 0 to nÞ ^ ðk 6¼ iÞ ^ :isPrimitiveðTkÞ do
15 if :cmpTkðargk; �ðargkÞÞ then
16 D D [hargk; argii
17 if :cmptðret; ret0Þ then
18 D D [ht@return; argii

3.4 Automated Stub Generation for Precise Taint-
Analysis

We design mDep to automatically generate summary stubs
for native methods based on the dependency relations
yielded from the mutation-based dependency generation to
improve the taint analysis of DroidSafe. A stub in our sce-
nario is a Java method that captures the data dependency
between the arguments and the return value of the original
native method. The stubs do not provide the complete run-
time behavior of native code. Instead, they provide effective
abstractions for the static information flow analysis. In the
accurate analysis stubs of DroidSafe [13], such abstractions are
modeled for only Android platform libraries. This section
discusses the details of mDep’s automatic stub generation for
the nativemethods for apps and third-party libraries.

Generating a stub for a native method is to use basic oper-
ations and predicates compatible with the implementation

of DroidSafe to specify how to propagate taints in the native
method from the input to the output. For each object, a field
taint of type DSTaintObject is created by DroidSafe to
store the taint information. Therefore, DroidSafe provides
two predicates, addTaint and getTaintT , in the ADImodel [13]
to help operate on the content of this field; one can specify
the propagation rules related to objects with the two predi-
cates. For the primitive-type variables, DroidSafe has built-
in taint computation. Thus, the taint propagation can be rep-
resented by basic value operations, e.g., an assignment from
variable a to b in the stub tomock the dependency of b on a.

As mentioned in Section 3.3, mDep generates depen-
dency relations between the input and output of a native
method. Thus, the automatic stub generation ignores the
internal data flows of a native method; instead, it directly
builds the data dependency between the input and output
(i.e., the arguments and the return value). In all, depending
on whether the inputs and outputs are of primitive types
(Tp) or non-primitive types (Tnp), we design different rules
for the four situations as follows:

1. Tnp output depends on Tnp input. If the type of input
is compatible with the type of output, we assign the
input to the output; otherwise, we use getTaintTnp
and addTaint to adapt the taint of input into the taint
of output.

2. Tnp output depends on Tp input. We use addTaint to
add the value of input itself into the field taint of
output.

3. Tp output depends on Tnp input. We use getTaintTp
of the input to return a primitive-type value and
assign it to the output.

4. Tp output depends on Tp input. We assign the input
to the output after proper type casting of the input.

When the output depends on multiple primitive-type
inputs, we define an operator � over primitive-type value
to sum up the value of these inputs and assign the result to
the output. When the output depends on multiple non-
primitive-type inputs, the summary computations are built
up sequentially based on the above rules.

4 IMPLEMENTATION ISSUES

In this section, we discuss several important issues we should
deal with in our implementation. The implementation of
mDep is available at https://github.com/suncongxd/muDep.

Implementing the Binary Analysis. The lightweight static
binary analysis in Section 3.2 can support different ISAs,
including ARM (armeabi and armeabi-v7a), ARM-64
(arm64-v8a), X86, and X86-64. The reason we fail to analyze
MIPS/MIPS-64 binaries is we do not have an effective
method that maps the IDA-disassembled information of a
Java-method callsite in native code to the Java method. The
applicability of the binary analysis relies on the capability of
IDA on control-flow analysis of different ISAs. There are
several cases we have to address for this binary analysis.

Our static binary analysis discussed in Section 3.2 is
designed to deal with the cases that sources or sinks are
called directly in the native code. Suppose the native code
calls another Java method that propagates sensitive data to
a sink or takes sensitive data from a source. In that case, the

SUN ETAL.: mDEP: MUTATION-BASED DEPENDENCYGENERATION FOR PRECISE TAINTANALYSIS ON ANDROID NATIVE... 1465

https://github.com/suncongxd/muDep

analysis cannot build the correlation between the native
method and the sink or the source. For this case, we usemul-
tiple folds of source/sink updating. We assume, for each app,
there are k native methods n ¼ fn1; . . . ; nkg and l Java meth-
ods called on the CFG of the native side of these native
methods, i.e., m ¼ fm1; . . . ;mlg. The current set of sources
and sinks are respectively sc and sk. Our source/sink
updating principle is as follows:

1. Backward sink updating: For some ni 2 n such that ni

has been inserted to sk according to Section 3.2, we
take m as the source list and apply our data-flow
analysis to detect data flows from each method in m
to ni. For any mj 2 m such that a data flow to ni is
discovered (i.e., mjˆ ni), we update sk with a new
sink mj and start the second fold of static binary
analysis in Section 3.2, until no new sinks can be
discovered.

2. Forward source updating: For some ni 2 n such that ni

has been inserted to sc according to Section 3.2, we
takem as the sink list and apply our data-flow analy-
sis to detect flow from ni to each method in m. For
any mj 2 m such that niˆ mj, we update sc with mj

and start the second fold of static binary analysis,
until the sc cannot be updated.

After multiple folds of source/sink updating, sc and sk will
eventually reach a fixpoint since the number of methods is
limited for any app.

To make the data-flow analysis in each fold precise, the
mutation-based analysis and updated stubs should be
applied in advance. Meanwhile, the wrapping of the calls to
proxy source methods discussed in Section 3.2, as a step of
stub updating, depends on the result of each fold, which
indeed makes the stub updating and static binary analysis
mutually recursive. To trade-off between completeness and
scalability, we specify a finite depth of folds to control the
complexity of source/sink updating in our implementation.
As a result, by combining the native-side control-flow corre-
lation and Java-side data-flow analysis, which makes the
back-and-forth interactions between native code and Java
code trackable, the source/sink updating can discover more
native methods as sources and sinks. For instance, when set-
ting the depth of folds as 2, we can add the native method
n_1 in Fig. 3 of [2] to the sink list.

Implementing Dynamic Dependency Generation. The dynamic
analysis in Algorithm 2 is implemented into two phases. The
first phase is a program generator that statically analyzes the
signature of native methods of the original app and generates
code forAlgorithm2 as a newAndroid app. In this procedure,
we use the Soot framework [21]. The second phase is running
the generated app in an Android emulator to derive the
dependency relation D. We use DexClassLoader to load
the classes and shared objects from the original app and use
reflection-based programming to call the nativemethods. The
generated app can support both Android 4.4 and Android 8.0
runtime. For the scalability issue, we limit the parameters
used in the dynamic analysis, such as the domain of primitive
types, the size of arrays, the length of strings, and the times of
mutations (i.e., BOUND in Algorithm 2). Because the depen-
dency relationD is an under-approximation of the real depen-
dencies and we feed the pairwise execution of the native

method with random inputs, larger values for these parame-
ters improve the completeness of data-flow analysis but
increase the overall computational cost of the analysis.

Preparing the inputs with non-primitive types for each
iteration of Algorithm 2 requires us to build objects with
random content for the potential mutations or clones. If the
type of argument of the native method is an interface or
abstract class, we apply some type inferences to map the
argument to some concrete class or subtype to find available
object constructors. Specifically, the dependency generation
will search for all the non-primitive subtypes implementing
the interface or derived from the abstract class, and perform
a clone, mutate, or cmp operation on each subtype. On the
other hand, in preparing an input argument with primitive
type or immutable non-primitive type, e.g., String, such
an argument is immutable in the pairwise executions of the
native method; therefore, we use the same copy instead of
cloning it. For reliability, we resort to several libraries [22],
[23] to implement the cloneT , cmpT , and mutateT operations.
These libraries also help deal with the recursive types of
arguments and return value. The static field of type T argu-
ment of the native method cannot be cloned deeply as did
on the heap objects. To mitigate this constraint, we derive a
subclass T 0 < : T and create a shadow static field in T 0 for
each static field of T . Then, the instances of T 0 are used in
the dependency generation.

Special Native Methods With no Dependency. There are two
forms of native methods for which our dependency genera-
tion in Algorithm 2 is not applicable. Instead, we deal with
them specially:

1. For static native method with no argument, we can-
not build up the dependency relation. However, the
return values of the pairwise executions may still
vary due to the potential indeterminate impact from
the native side. We treat this case conservatively as a
taint generation.

2. For static native method that has only primitive-type
arguments and returns void, the derived depen-
dency relation is always empty. We generate an
empty stub for such method.

5 EVALUATION

This section investigates the accuracy and effectiveness of
mDep by comparing it with DroidSafe [13] and JN-SAF [2].

The evaluations involve three datasets of Android apps,
as presented in Table 1. For the accuracy comparison, we
use dataset S1, which consists of 23 apps of NativeFlow-
Bench [2], the app in Fig. 1, and 119 apps of DroidBench 2.0
[24], with complete ground truths of the sensitive informa-
tion flows in them. Dataset S2 and S3 are used to evaluate
the effectiveness of different tools on real-world apps and
malware. We summarized the number of shared objects in
different ISAs in the apps of S2 and S3. There are 15,203
native libraries in datasets S2 and S3. 73.0% of them (11,096
shared objects) are in ARM/ARM-64 (armeabi, armeabi-
v7a, and arm64-v8a), and 21.1% of them (3,215 shared
objects) are in X86/X86-64. Only around 5.9% are in MIPS/
MIPS-64, which we do not support analyzing. On the other
hand, in datasets S2 and S3, we find no native Activity

1466 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

component, which we fail to resolve and is also reported to
be very rare in the datasets of JN-SAF[2].

Our experiments are conducted on an elastic compute
service with 2.5GHz�8 Intel Xeon(Cascade Lake) Platinum
8269CY CPU, 64GB RAM, Linux 4.4.0-174-generic kernel
(Ubuntu 16.04). To avoid bias on the results of the informa-
tion-flow analysis, we use the same source and sink list for
each tool. We merge the source/sink lists of DroidSafe and
JN-SAF and use the merged source and sink list in our eval-
uation. The source list contains 7,873 source methods, and
the sink list contains 3,551 sink methods.

5.1 Accuracy of mDep

On dataset S1, we evaluate the accuracy of mDep compared
with JN-SAF and the original DroidSafe. We separate the
evaluation into two parts. In Table 2, we present the results
on the test cases containing native code. In Table 3, we
show the results on DroidBench 2.0, a general benchmark

suite to evaluate the accuracy of different taint analyses for
Android apps. Note that none of the apps in DroidBench
2.0 contains native code. In Tables 2 and 3, we present the
true positives (TP), false positives (FP), and false negatives (FN)
of each approach. GTP stands for the ground-truth positives.
We summarize the measurements of different approaches
in Table 4. mDep can reach higher recall and F1-score than
JN-SAF. Therefore, we conclude that JN-SAF may be pre-
ferred in circumstances where high precision (less FPs) is
more desired than high recall (less FNs), e.g., exploit con-
struction, while mDep may be better when high recall is
more favored, e.g., information-leakage defense. Thus, we
use the F1-score to measure the overall efficacy for an unbi-
ased comparison. We next discuss in detail the false posi-
tives and false negatives we observed in our experiment.

False Positives of Native-Code-Involved Flows. Since Droid-
Safe can only build empty stubs for native methods intro-
duced by the app itself, the potential taint propagation will
be cut off. As a result, DroidSafe cannot report any positive
for NativeFlowBench at all. JN-SAF detects two false posi-
tives for NativeFlowBench. One of them is reported in the
analysis of native_noleak_array; in this case, JN-SAF
cannot distinguish different indices of array elements; there-
fore, it treats the tainting on one element to be propagated
over the whole array. The other one is reported for nati-
ve_complexdata_stringop; in this case, JN-SAF cannot
precisely analyze the string operations; thus, it conserva-
tively treats more fields of data structures as tainted fields.
For both cases, the dependency generation of mDep can suc-
cessfully figure out more accurate dependencies. As for the
false positives of mDep, in the analysis of native_com-

plexdata, both native methods call the sink method LOGI,

TABLE 1
Datasets for the Evaluation

Dataset #App Description

S1 143 NativeFlowBench [2], the example in Fig. 1,
and DroidBench 2.0 [24]

S2 5,096 Real-world apps with native code. Released
Jul.-Oct. 2019 on Google Play, and got
through AndroZoo [25]

S3 2,052 Malware with native code from Drebin [26],
DroidAnalytics [27] and
CICInvesAndMal2019 [28]

TABLE 2
Results on the Apps With Native Code in Dataset S1

SUN ETAL.: mDEP: MUTATION-BASED DEPENDENCYGENERATION FOR PRECISE TAINTANALYSIS ON ANDROID NATIVE... 1467

but only one LOGI releases sensitive data. Because mDep
conservatively takes both native methods as sinks due to
their control-flow correlation with LOGI and does not con-
sider the sensitivity of data delivered into LOGI, mDep then
reaches a false positive.

False Negatives of Native-Code-Involved Flows. As we
explained earlier, DroidSafe is incapable of detecting any
sensitive flows in NativeFlowBench. Thus, all the ground-
truth flows are false negatives of DroidSafe, including the
native-code-involved flow in our motivating example in
Fig. 1. Meanwhile, JN-SAF also misses the native-code-
involved flow in Fig. 1. Our investigation indicates that JN-
SAF’s implementation issue makes its heap manipulation
summary imprecise on this example. In contrast, mDep’s
mutation-based dynamic analysis figures out better summa-
ries for more complicated memory accesses. As a compari-
son, the false negatives reported by mDep are all due to its
inability to deal with the native Activity components, as
demonstrated by apps native_pure, native_pure_-

direct, and native_pure_direct_customized in
Table 2.

Differences in Detecting Native-Code-Uninvolved Flows.
Since none of the apps in Table 3 contains native code and
mDep is built upon DroidSafe, the two tools report identical
results. Next, we compare mDep with JN-SAF. According to
Table 3, we observe that mDep and JN-SAF have diverse
behaviors. In most app categories of DroidBench, mDep
reports both more true positives and false positives than
JN-SAF, while JN-SAF reports more false negatives. We
infer the reason for such difference is that JN-SAF’s sum-
mary-based bottom-up data-flow analysis is specialized in
the inter-language data-flow analysis but is limited in

propagating the points-to information to the callee. In other
words, we believe mDep achieves better context sensitivity
than JN-SAF. Therefore, JN-SAF cannot achieve similar
effectiveness compared with the state-of-the-art context-,
object- and field-sensitive interprocedural data-flow analy-
sis, e.g., [11], [13]. Besides, merging the detection results of
DroidSafe and JN-SAF to achieve better coverage is not triv-
ial since there may be contradictory detection results from
them on native-code-involved flows. In contrast, mDep is
integrated into DroidSafe, which prevents this possibility.

5.2 Capability of mDep Compared With Another
Dynamic Taint Analysis

mDep has a dynamic phase to generate the data dependen-
cies for native methods, indicating that the incompleteness
of dependencies derived by our dynamic analysis is a
source of false negatives. Therefore, we evaluate the code
coverage of native code during our mutation-based depen-
dency generation. We use static binary instrumentation
with Dyninst [29] to profile the basic blocks of the shared
object files reached by our dynamic analysis. The code cov-
erage of the native code is measured by

#reached basic blocks

#basic blocks
� 100%

For the test cases with native code in dataset S1, each native
method has 6.7 basic blocks on average. We show the code
coverage in Table 5. Besides the 11 apps of NativeFlow-
Bench reporting instrumentation I/O errors and 119 apps of
DroidBench containing no native code, the code coverage
on the rest of the apps is 53.1% on average (29.2%�100%)
under the default configuration of mDep. Several cases have
low coverage rates and certain control-flow branches are
missed, but the branch misses have not triggered any false
negative in the later static taint analysis of mDep.

To compare the capability of taint analysis with the state-
of-the-art dynamic taint analysis systems, e.g., NDroid [7],
[30], we label the test cases in dataset S1 with the scenarios
(P1�P6) of information leakages defined in Fig. 3 of [30].
Each scenario depicts one pattern of whether and how

TABLE 4
Metrics Comparison of Different Tools on Dataset S1

Tool Precision(%) Recall(%) F1(%)

DroidSafe 71.6 75.0 73.3
JN-SAF 87.6 62.2 72.7
mDep 74.3 87.8 80.5

TABLE 3
Results on the Apps of DroidBench 2.0 in Dataset S1

App Category #apps GTP DroidSafe JN-SAF mDep

TP FP FN TP FP FN TP FP FN

Aliasing 1 0 0 0 0 0 1 0 0 0 0
Arrays and Lists 7 3 3 4 0 0 4 3 3 4 0
Callbacks 15 17 17 6 0 10 3 7 17 6 0
Field and Obj Sens 7 2 2 2 0 2 0 0 2 2 0
IAC 3 8 8 12 0 4 0 4 8 12 0
ICC 18 24 24 5 0 17 0 7 24 5 0
Lifecycle 17 17 17 4 0 10 0 7 17 4 0
General Java 23 20 20 8 0 11 3 9 20 8 0
Misc Android-Specific 12 11 9 2 2 7 0 4 9 2 2
Implicit Flows 4 8 2 0 6 0 0 8 2 0 6
Reflection 4 4 4 0 0 1 0 3 4 0 0
Threading 5 5 4 1 1 4 0 1 4 1 1
Emulator Detection 3 6 0 0 6 4 0 2 0 0 6
Total 119 125 110 44 15 70 11 55 110 44 15

1468 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

information flow crosses the native and Java contexts. For
example, P2 represents the scenario where sensitive flows
start from the Java context, then switch to the native context,
and eventually return to the Java context. Our labeling
results of test cases are listed in Table 5. Based on our label-
ing, considering the TP/FP/FN presented in Tables 2 and 3,
we can see that mDep is able to reach high precision and
high recall for test cases of scenario P1�P5. The only
exception is scenario P6, which represents the case that
the sensitive flow stays at the native side. For such
native-only sensitive flows, if they are implemented by
native Activity, mDep will report only false negative, as
demonstrated by the three native Activity cases in
Table 2. Otherwise, our static binary analysis will deem
the native methods containing such flows as both sour-
ces and sinks, but it cannot tell the exact locations of the
sources or sinks in the native method. Because we failed
to adjust the sources and sinks of NDroid with the
source/sink list of mDep, we are unable to give a fair
comparison of the metrics with ground truths.

5.3 Improvement of mDep Upon DroidSafe

mDep is built upon the backend of DroidSafe and its ADI
model. Based on the precision and recall metrics presented
in Section 5.1, we evaluate how mDep can improve Droid-
Safe by introducing native code analysis and new stub gen-
eration. Furthermore, we apply mDep to understand how
shared object files are involved in sensitive information
flows in real-world apps and malware.

Our experiments are conducted on dataset S2 and S3. The
number of new sensitive flows introduced by native code is
considerable, as illustrated in the first three columns of

Table 6. For the app in S2, DroidSafe can detect 5,052 sensi-
tive flows while mDep can detect 6,427, with an increase
rate of 27.2%. For the app in S3, DroidSafe detects 14,330
sensitive flows, and mDep can detect 16,920, with an
increase rate of 18.1%. We are aware that the incremental
component contains false positives. Therefore, we hope to
evaluate the true positive increase rates. However, due to
the difficulty in obtaining the ground truths of real-world
apps, we can only use the precision yielded on S1 to esti-
mate the increase rates of true positives on S2 and S3. In
detail, with the precision of DroidSafe being 71.6%, we esti-
mate that DroidSafe detects 3,617 and 10,260 true positives
for S2 and S3, respectively. In comparison, we estimate that
mDep detects 4,775 and 12,571 true positives, with increase
rates being 32.0% and 22.5% for S2 and S3, respectively. In
fact, we have considered relying on runtime information to
collect ground truth for dataset S2 and S3, which turned out
to be challenging. On one hand, determining if a profiled
execution trace carries sensitive data-flows incurs manual
efforts, which is unscalable, while relying on any automated
tool would introduce inaccuracy to the ground truth. On the
other hand, the collected ground truth is likely to be incom-
plete, which reduces the credibility of the ground truth.
Therefore, we leave the ground-truth collection from run-
time information as future work.

To figure out the characteristics of sensitive flows caused
by native code, we classify and rank the sensitive flows in the
apps of S2 and S3 detected by mDep and compare with the
respective numbers of flows detected by DroidSafe. The top-
10 categories of sensitive data-flows detected by mDep are
listed in Table 7. We know the most common sensitive flows
are in the category IOˆ IO, no matter whether we consider
the behavior of native code. An example is reading the content
of a file andwriting it to another file. There are three categories
of sensitive flows increasing enormously after we consider
analyzing the native code, i.e., FILE_INFORMATIONˆ IO,
LOCATIONˆ NETWORK, and UNIQUE_IDENTIFIERˆ NET-

WORK. We investigate the reason for such increases. We found
that the increase in FILE_INFORMATIONˆ IO flows highly
depends on the native libraries of information pushing (libj-
core.so, libcocklogic.so, libbdpush.so), map/location (libBai-
duMapSDK.so, libtencentloc.so, liblocSDK.so), image
processing (libgifimage.so, libwebpbackport.so), and excep-
tion report (libBugly.so, libBugtags.so). The increase in LOCA-

TIONˆ NETWORK flows frequently depends on the native
library of SQLite storage (libsqlc-native-driver.so). The
increase in UNIQUE_IDENTIFIERˆ NETWORK flows depends
on the native library of privilege promotion (libandroidterm.
so). Also, some unknown native libraries, e.g., libopenterm.
so, are frequently involved in the apps with these sensitive
flows.

TABLE 6
Number of Sensitive Flows Detected by Different Approaches

#flows
(DroidSafe)

#flows (mDep) #flows (JN-
SAF)

Dataset Total Avg. Total Avg. Total Avg.

S2 5,052 8.28 6,427 10.50 497 2.54
S3 14,330 94.28 16,920 111.32 635 4.44

TABLE 5
Information Leakage Scenarios of Dataset S1 and Code Cover-

age of Native Code

App Name Scenario Coverage(%)

native_source P3 57.1
native_nosource No leak 100.0
native_source_clean No leak 100.0
native_leak P1 N/A
native_leak_array P1 N/A
native_leak_dynamic_register P1 N/A
native_dynamic_register_multiple P1 62.5
native_noleak No leak 100.0
native_noleak_array No leak N/A
native_method_overloading P1 N/A
native_multiple_interactions P1+P4 N/A
native_multiple_libraries P1 N/A
native_complexdata P1 70.0
native_complexdata_stringop P1 N/A
native_heap_modify P3 68.0
native_set_field_from_native P3 48.7
native_set_field_from_arg P2 100.0
native_set_field_from_arg_field P2 100.0
native_pure* (3 apps) P6 N/A
icc_javatonative P1 29.2
icc_nativetojava P2 80.6
example_fig1 P2+P5 100.0
DroidBench (119 apps) P5/No leak No .so
Avg. – 53.1

SUN ETAL.: mDEP: MUTATION-BASED DEPENDENCYGENERATION FOR PRECISE TAINTANALYSIS ON ANDROID NATIVE... 1469

5.4 Differences Between mDep and JN-SAF When
Applied to Real-World Apps

In our experiment, we observed that mDep detected a lot
more sensitive flows than JN-SAF did on datasets S2 and
S3. As shown in the last column of Table 6, JN-SAF detected
497 sensitive flows on S2 and 635 sensitive flows on S3,
while mDep detected 6,427 and 16,920 sensitive flows on S2
and S3, respectively. Thus, in this section, our goal is to
interpret such a vast discrepancy. However, due to the lack
of ground truths of sensitive information flow in real-world
apps, we have to resort to a less decisive approach to per-
forming the comparison. We first attempt to compare false
positives; however, we are not aware of a good way to
investigate. Instead, we first enumerate the differences we
observed as an objective comparison. Then we estimate the
potential true positives of mDep.

There are only 21 apps (4 real-world apps in S2 and 17
malware in S3) detected to be vulnerable by both JN-SAF
and mDep. In these apps, mDep detected 26 out of 50 sensi-
tive flows that JN-SAF detected, and mDep also detected
many more sensitive flows undetectable by JN-SAF. Thus,
albeit mDep and JN-SAF give similar results over the

NativeFlowBench suite, for real-world apps, we conclude
that the two tools demonstrate significant divergences.
More details are shown in Table 8. In terms of notation,
flowsJS and flowsmD respectively represent the type of sensi-
tive flows detected by JN-SAF and mDep, in the form of
source_categoryˆ sink_category:#flows. For example, in the
category DroidKungFu of dataset Drebin [26] (i.e., the 5th
row in Table 8), JN-SAF can detect one sensitive flow in
each of the seven apps, whose type is IPCˆ IPC. This sensi-
tive flow is also detected by mDep (i.e., flow-
sJN-SAF�flowsmDep ¼ ;). Meanwhile, mDep can detect
other 379 sensitive flows distributed in different flow cate-
gories in each of these apps. There are also test cases that
most of the sensitive flows detected by JN-SAF are missed
by mDep, e.g., the 18 flows in Mobinauten of Drebin.

To investigate the true positives of mDep in more detail,
based on our evaluation on dataset S1, for apps without
native code (e.g., apps in DroidBench 2.0), mDep built upon
DroidSafe is prone to achieve a more complete detection
than JN-SAF. It shows that compared to JN-SAF, mDep is
more capable of discovering sensitive information flows
where native code is not involved. For the real-world apps,
we argue that there must exist a large portion of such sensi-
tive information flows. So, for this portion of sensitive infor-
mation flows, we believe mDep should detect more true
positives. Moreover, due to the lack of ground truths, we
use another independent taint analyzer, FlowDroid [11]
(v2.8), to estimate the magnitude of true positives detected
by mDep. In Table 8, #flowsFD is the average number of
flows detected in each app by FlowDroid. #flowsmD\FD is
the average number of flows in each app detected by both
FlowDroid and mDep. Because of the difference in the
approaches and configurations, we cannot infer the number
of true positives outside flowsmD\FD. However, we can
deduce the flows in flowsmD\FD tend to be true positives,
which are in general more than the flows detected by JN-
SAF. Besides, FlowDroid only uses mock stubs for system-
defined native code and should miss sensitive flows related

TABLE 7
Top Ranking Sensitive Flows Detected by mDep Compared With

DroidSafe

sourceˆ sink #flows #flows Increasing rate

(DroidSafe) (mDep)

IOˆ IO 2,128 2,209 3.81%
FILE_INFORMATIONˆ IO 486 1,608 230.86%
NETWORKˆ NETWORK 920 1,040 13.04%
IOˆ NETWORK 906 947 4.53%
LOCATIONˆ NETWORK 552 845 53.08%
UNIQUE_IDENTIFIERˆ NETWORK 531 718 35.22%
NETWORKˆ IO 572 659 15.21%
content.resˆ IO 563 563 0%
FILE_INFORMATIONˆ NETWORK 495 555 12.12%
IOˆ IPC 516 521 0.97%

TABLE 8
Detailed Results of the Sensitive Flows Detected by Both JN-SAF and mDep (Notations: JS=JN-SAF, mD = mDep, FD=FlowDroid)

Category #apps #flowsJS flowsJS\ flowsmD flowsJS�flowsmD #flowsmD #flowsFD #flowsmD\FD
(Dataset) (mD & JS)

N/A (S2) 2 2 USER_INPUTˆ IPC:1 USER_INPUTˆ 43 44 12.5
SHARED_PREFERENCES:1

N/A (S2) 1 1 ; IPCˆ LOG:1 108 37 16
N/A (S2) 1 1 ; USER_INPUTˆ 23 46 8

SHARED_PREFERENCES:1
DroidKungFu 7 1 IPCˆ IPC:1 ; 380 105.6 13.3
(Drebin)
Xsider 2 4 UNIQUE_IDENTIFIERˆ LOG:2, ; 46 89 26.5
(Drebin) IPCˆ LOG:2

1 2 UNIQUE_IDENTIFIERˆ LOG:2 ; 41 105 31
1 2 UNIQUE_IDENTIFIERˆ LOG:2 ; 35 99 32

Mobinauten 1 20 UNIQUE_IDENTIFIERˆ LOG:2 IPCˆ IPC:15, 47 105 18
(Drebin) UNIQUE_IDENTIFIERˆ

SHARED_PREFERENCES:3
Adrd 1 1 ; osˆ IPC:1 64 24 2
(Drebin)
KungFu 3 1 IPCˆ IPC:1 ; 380 97 14.3
(DroidAnalytics)
faketaoBao 1 1 ; osˆ IPC:1 36 11 1
(CICInvesAndMal2019)

1470 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

to the native side, which justifies the true positives should
be more than #flowsmD\FD.

5.5 Analysis Efficiency of mDep

We evaluate the efficiency of our approach on the apps ana-
lyzable by both JN-SAF and mDep. The average analysis
runtime and the peak memory consumption of both
approaches are presented in Table 9. For JN-SAF, the analy-
sis is divided into two phases, summary-based bottom-up
data-flow analysis (SBDA) and native code analysis
(Native). For mDep, our analysis consists of the control-flow
based static binary analysis (CFBA), the mutation-based
dependency generation (DepGen), the stub generation
(StubGen), and the information flow analysis using Droid-
Safe (DroidSafe). For both approaches, the data-flow analy-
sis is in the lead of the computational cost in general.
Because of the difference in the points-to analysis, the SBDA
of JN-SAF is generally more efficient than the data-flow
analysis of mDep (based on DroidSafe) on both time and
memory cost. For the native-side static analysis, mDep
resorts to control-flow analysis, while JN-SAF implements
an annotation-based data-flow analysis. Besides, the auto-
mated stub generation is efficient, and the computational
cost can be ignored.

The dynamic dependency generation of our approach
relies on several configurations. To collect data for the effi-
ciency comparison, we used the default configuration, i.e.,
BOUND=15, and the depth of field applied on the atomic
predicates, e.g., cmpT and mutateT , is 5. The effect of differ-
ent BOUND values and depths of field on the time costs of
dependency generation is illustrated in Fig. 4. The time cost
increases linearly with the increment of BOUND, for each
choice on the depth of field. On the other hand, there is no
apparent differentiation in the time costs given different
depths of field, indicating that, in our implementation, the
argument preparations and comparisons using the atomic
predicates are efficient.

6 DISCUSSION

In this section, we discuss the sources of false positives and
false negatives introduced by the dynamic analysis per-
formed on the native code (.so files) and the threats to the
validity of our approach.

Sources of False Negatives. First, mDep cannot deal with
native Activity components, thus will not report the sensi-
tive flows inside these components, which lead to false neg-
atives. Second, the randomly constructed values, objects,
and object fields that we feed to the pairwise execution of
the native method in Algorithm 2 may be insufficient to

discover all data dependencies between arguments and
return values of native methods, especially dependencies
relying on specific system states, e.g., data from other
threads. mDep relies on increasing the mutation iterations,
i.e., the value of BOUND in Algorithm 2, to improve the cov-
erage of dynamic analysis and to reduce the chance of such
false negatives.

Sources of False Positives. Randomness at the native side
can be a factor in causing false positives. For example, if a
random event can bypass the input cloning and trigger
some differentiation of the output of the native function, the
dependency generation algorithm will mistakenly build a
dependency between the current mutated input and such
output. Another source of false positives is the binary-level
static control-flow analysis that correlates existing sinks
with newly added sinks. Such an analysis introduces over-
approximations, which may bring spurious correlations of
native sinks to the taint analysis, as shown in native_-

complexdata in Table 2. Moreover, if the native code
accesses a stateful function, such a function might be
another source of randomness to the local state of the native
code, resulting in false positives.

Other Threats. mDep uses dynamic analysis to generate
data dependencies for the native methods and then builds
the code stubs based on these data dependencies for the
static taint analysis. Such dynamic-over-static strategy con-
fronts the difficulty of analyzing obfuscated or hardened
apps. Such limitations are common in most of the static taint
analyses of Android apps, e.g., [2], [11], [13]. We expect
unpackers, e.g., PackerGrind [31], [32], and deobfuscators,
such as [33], may help mitigate such limitations. In contrast,
the dynamic taint analyses, e.g., [7], [9], suffer less from
such limitations. On the other hand, our static taint analysis
framework inherited from DroidSafe, whose ADI model
modified by mDep, mainly supports Android 4.4 APIs, even
though our dynamic analysis can support Android 8.0 run-
time. Another issue is the difference between the patterns of
randomly generated inputs and the specific patterns of the
inputs used by app developers. Our random inputs and

Fig. 4. Effect of configurations of dependency generation on the time
cost.

TABLE 9
Efficiency Comparison of JN-SAF and mDep (Average on Each

App)

Time(s) Mem(GB)

JN-SAF SBDA Native
564.50 16.67 8.44

mDep DepGen StubGen DroidSafe CFBA
23.20 0.00 678.96 0.89 21.56

SUN ETAL.: mDEP: MUTATION-BASED DEPENDENCYGENERATION FOR PRECISE TAINTANALYSIS ON ANDROID NATIVE... 1471

mutations may discover a considerable number of valid but
rarely used data dependencies. An expected improvement
is to profile the context of each native method call to capture
the commonly used patterns of arguments.

7 RELATED WORK

Security on Native Code of Android. Native code dramatically
benefits the performance-critical applications, e.g., games
and graphical acceleration, and for the purpose of anti-
reverse engineering [34][35]. Using native code and libraries
is very popular in mobile scenarios [36][1]. However, a large
portion of native code used in Android apps is migrated
from open source projects [35]. Meanwhile, the lack of con-
trol mechanisms for the execution of native code, and the
misuse of domain-specific native functions, pose a signifi-
cant threat to the security of the Android platform and apps.

The native code and libraries have been treated as an
important source of root exploits and root privilege escala-
tion. Fedler et al.[37] propose to control the execution of
native binaries and libraries at the system level by modify-
ing chmod or customizing specific Java library APIs.
RiskRanker [38] compares the native code with the signa-
tures of known root exploits. It also detects whether the
encrypted native exploit code is stored in an irregular direc-
tory and decrypted for execution at runtime. DroidRanger
[39] uses native code as features to identify the family of
zero-day malicious apps. It relies on a dynamic execution
monitor to inspect the runtime behaviors of untrusted code,
especially to collect the system calls made by native code.
The PREC framework [40] bridges offline behavior learning
and runtime anomaly detection to mitigate root exploits. It
uses thread-based dynamic analysis to identify system calls
originating from risky third-party native code. By matching
the client-side runtime system call sequences to the normal
behavior model of the app, PREC identifies malicious sys-
tem call sequences and suppresses the malicious activity in
the native thread.

Moreover, native code is usually exploited to dynamically
load external malicious code [41] or violate privacy and
safety at the application level [36]. User-level sandboxing is a
promising approach to compartmentalize the actions of
native code and restrict the communication between native
code and Java code. NativeGuard [36] confines the potential
malicious behaviors of third-party native libraries by sepa-
rating the native libraries from Android application to
another stand-alone application, where native code resides
in a different address space and is deprived of unnecessary
privileges, to improve the overall security of the application.
AppCage [42] proposes a lightweight inner-process native
sandbox to prevent the native libraries of an app frommodi-
fying data and code outside the sandbox. The native sandbox
relies on SFI and is implemented through binary rewriting
and instrumentation. NaClDroid [43] also takes a thread-
level SFI to confine the untrusted native code. It uses
Google’s Native Client program in a separated thread to
redirect specific calls for loading the modules which host the
native code. NativeProtector [44] follows the process-based
isolations of NativeGuard and intercepts sensitive native
calls to perform fine-grained access control.

Several system-level approaches treat the Java and native
code analyses indiscriminately by capturing the critical run-
time features, e.g., system calls, of malicious behaviors.
Emulator-level debug tools, e.g., ltrace/strace [1], [45] and
the interception on specific instruction [46], are useful to
capture the sensitive system calls, which are drastically
relied on by the dynamic analysis for identifying the behav-
iors of the native part of apps. DroidScope [10] is a general-
purpose emulation-based framework using simultaneous
two-level VM introspection to rebuild the semantics of Java
and native components. CrowDroid [47] uses a client-side
app to monitor system calls reflecting the behavior of other
apps, collects such system calls on the server side, and
builds normality model to detect anomalies of malicious
apps. Mobile-Sandbox [45] traces the system calls made into
shared objects and logs such events as features for the learn-
ing-based malicious behavior detection. CopperDroid [46]
also employs VM introspection to record the system calls
regardless of whether they are from Dalvik or native code,
and then rebuilds the high-level semantics of objects and
behaviors. Afonso et al.[1] implement a dynamic analysis by
instrumenting the core libraries of the emulator to monitor
the native-side events. The dynamic analysis automatically
generates security policies, i.e., white-list of normal system
calls and Java methods invoked by native code, for the exist-
ing native sandboxing approach, e.g., NativeGuard [36].
The objective of [1] is to derive proper sandboxing policies
for native code that can avoid malicious behaviors but facili-
tate the normal execution of the native code, while the
dynamic analysis of mDep is to assist the static taint analy-
sis. Harvester [3] combines backward slicing with dynamic
code execution to resolve reflective method calls and extract
malicious features hidden by reflections. The derived reflec-
tion information has been used to improve both static and
dynamic taint analysis [9], [11]. The reflections derived by
Harvest are different from the data dependencies derived
by our dynamic dependency generation, which makes Har-
vester and mDep support diverse aspects of static taint
analysis.

Impreciseness of Information Flow Analysis for Android. The
permission system of Android has been proved in practice
insufficient to detect inconspicuous misbehavior, which vio-
lates information flow security policy. For example, suppose
the data of one component are permitted to be accessed by
another component. In that case, this component will have
full authority to dispose of the data, including misoperating
on or leaking the data without control. More sophisticated
taint tracking approaches or information flow analysis are
obligatory to avoid this kind of misbehavior. Taint tracking
usually focuses on the explicit flows of sensitive data, while
the information flow analysis may also take into account the
implicit flows thus is generally more fine-grained. The fre-
quent use of native code makes the taint tracking and infor-
mation flow analysis more complicated in both static and
dynamic approaches. Dynamic taint tracking [7], [9], [10],
[48], [49], [50] and static information flow analysis [2], [11],
[12], [13], [14], [15], [16] have been widely studied to detect
privacy leakages of Android apps. These approaches have
built different models for the effects of native code, leading
to different accuracy.

1472 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

In the dynamic approaches, TaintDroid [9] tracks the
propagation of labeled sensitive data and reports when sen-
sitive data reach the sinks. Its method-level tracking propa-
gates the taints through the JNI call bridges, conservatively
specifies that the tainted primitive-type or string argu-
ments of JNI calls can be delivered to taint the returned
value. DroidScope [10] takes a more fine-grained per-
spective on inspecting the data flow inside the native
instructions but ignores implicit information flow.
NDroid [7] is built on QEMU as modules that track data
flow through JNI. It instruments important JNI functions,
e.g., JNI entry/exit, object construction, to track different
flows through native contexts, and models the propaga-
tion of taint for popular system calls to reduce the per-
formance overhead caused by hooking these frequently
invoked functions.

In the static information flow analyses, the state-of-the-
art static analyzers [11], [12], [13], [14] do not analyze inside
the native component of apps. Instead, they generally resort
to some conservative rules to bypass the native calls. These
rules can express the taint-propagating relations between
used objects, arguments, and return value of native code.
Although this kind of abstractions are efficient, they may be
neither sound nor precise in modeling taint propagation.
Also, the manually crafted models cannot scale up to vari-
ous third-party native code.

8 CONCLUSION AND FUTURE WORK

In this work, we propose a hybrid framework that combines
a control-flow based static binary analysis with a dynamic
dependency modeling to build the tainting models of native
code in Android apps. Based on such tainting models, we
derive fine-grained stubs for the native functions and merge
them into the ADI model of information flow analysis
engine DroidSafe. With such tainting behavior summaries
of native code, the DroidSafe engine can detect sensitive
data flows triggered by different types of vulnerabilities of
native code. The evaluations have demonstrated the appli-
cability of our approach. Without any intention to depreci-
ate the state-of-the-art inter-language approach, our
experimental results emphasize that our approach behaves
differently on the accuracy and effectiveness compared
with the state-of-the-art inter-language analyzer JN-SAF.
Especially, our approach can detect more sensitive flows
due to its tight integration with the context-, object- and
field-sensitive data-flow analysis. Meanwhile, our approach
still confronts performance issues, according to the illustra-
tion of Table 9.

As future work, we plan to apply our approach to some
more efficient analysis framework, e.g., FlowDroid [11].
Lightweight symbolic execution and binary-level points-to
analysis [51] are also expected to improve the efficiency of
mutation-based dependency generation or to guide the
input choices and reduce false negatives. Moreover, we are
endeavoring in parameterizing the disassembly part in our
system so that users can substitute IDA with other disas-
semblers such as [52], [53], [54].

ACKNOWLEDGMENTS

Cong Sun and Yuwan Ma have contributed equally to this
work.

REFERENCES

[1] V. M. Afonso et al., “Going native: Using a large-scale analysis of
android apps to create a practical native-code sandboxing policy,”
in Proc. 23rd Annu. Netw. Distrib. Syst. Secur. Symp., 2016.

[2] F. Wei, X. Lin, X. Ou, T. Chen, and X. Zhang, “JN-SAF: precise and
efficient NDK/JNI-aware inter-language static analysis frame-
work for security vetting of android applications with native
code,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2018,
pp. 1137–1150.

[3] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden,
“Harvesting runtime values in android applications that feature
anti-analysis techniques,” in Proc. 23rd Annu. Netw. Distrib. Syst.
Secur. Symp., 2016.

[4] S. Rasthofer, I. Asrar, S. Huber, and E. Bodden, “How current
android malware seeks to evade automated code analysis,” in
Proc. 9th IFIP WG 11.2 Int. Conf. Informat. Secur. Theory Pract., 2015,
pp. 187–202.

[5] M. Y. Wong and D. Lie, “Tackling runtime-based obfuscation in
android with TIRO,” in Proc. 27th USENIX Secur. Symp., 2018, pp.
1247–1262.

[6] J. Seo, D. Kim, D. Cho, I. Shin, and T. Kim, “FLEXDROID: enforc-
ing in-app privilege separation in android,” in Proc. 23rd Annu.
Netw. Distrib. Syst. Secur. Symp., 2016.

[7] C. Qian, X. Luo, Y. Shao, and A. T. S. Chan, “On tracking informa-
tion flows through JNI in android applications,” in Proc. 44th
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2014, pp. 180–
191.

[8] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu, “Malton: Towards
on-device non-invasive mobile malware analysis for ART,” in
Proc. 26th USENIX Secur. Symp., 2017, pp. 289–306.

[9] W. Enck et al., “Taintdroid: An information-flow tracking system
for realtime privacymonitoring on smartphones,” in Proc. 9th USE-
NIX Symp. Operating Syst. Des. Implementation, 2010, pp. 393–407.

[10] L. Yan and H. Yin, “DroidScope: Seamlessly reconstructing the OS
and dalvik semantic views for dynamic android malware analy-
sis,” in Proc. 21th USENIX Secur. Symp., 2012, pp. 569–584.

[11] S. Arzt et al., “FlowDroid: Precise context, flow, field, object-sensi-
tive and lifecycle-aware taint analysis for android apps,” in ACM
SIGPLAN Conf. Prog.. Lang. Des. Implementation, 2014, pp. 259–269.

[12] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and gen-
eral inter-component data flow analysis framework for security
vetting of android apps,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2014, pp. 1329–1341.

[13] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M.
C. Rinard, “Information flow analysis of android applications in
DroidSafe,” in Proc. 22nd Annu. Netw. Distrib. Syst. Secur. Symp.,
2015.

[14] S. Calzavara, I. Grishchenko, and M. Maffei, “HornDroid: Practi-
cal and sound static analysis of android applications by SMT sol-
ving,” in Proc. IEEE Eur. Symp. Secur. Privacy, 2016, pp. 47–62.

[15] S. Arzt and E. Bodden, “StubDroid: Automatic inference of precise
data-flow summaries for the android framework,” in Proc. 38th
Int. Conf. Softw. Eng., 2016, pp. 725–735.

[16] P. Lantz and B. Johansson, “Towards bridging the gap between
dalvik bytecode and native code during static analysis of android
applications,” in Proc. Int. Wireless Commun. Mobile Comput. Conf.,
2015, pp. 587–593.

[17] I. Dillig, T. Dillig, A. Aiken, and M. Sagiv, “Precise and compact
modular procedure summaries for heap manipulating programs,”
in Proc. 32nd ACM SIGPLAN Conf. Prog. Lang. Des. Implementation,
2011, pp. 567–577.

[18] S. Nilizadeh, Y. Noller, and C. S. Pasareanu, “DifFuzz: Differential
fuzzing for side-channel analysis,” in Proc. 41st Int. Conf. Softw.
Eng., 2019, pp. 176–187.

[19] Hex-Rays, The IDA Pro disassembler and debugger, 2008.
[Online]. Available: https://www.hex-rays.com/products/ida/

[20] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow
by self-composition,” in Proc. 17th IEEE Comput. Secur. Found.
Workshop, 2004, pp. 100–114.

SUN ETAL.: mDEP: MUTATION-BASED DEPENDENCYGENERATION FOR PRECISE TAINTANALYSIS ON ANDROID NATIVE... 1473

https://www.hex-rays.com/products/ida/

[21] R. Vall�ee-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sun-
daresan, “Soot - a java bytecode optimization framework,” in Proc.
Conf. Centre Adv. Stud. Collaborative Res., 1999, p. 13.

[22] Deep clone java objects, 2010. [Online]. Available: https://github.
com/kostaskougios/cloning

[23] java-util, 2013. [Online]. Available: https://github.com/jdereg/
java-util

[24] Droidbench 2.0, 2015. [Online]. Available: https://github.com/
secure-software-engineering/DroidBench

[25] K. Allix, T. F. Bissyand�e, J. Klein, and Y. L. Traon, “AndroZoo:
Collecting millions of android apps for the research community,”
in Proc. 13th Int. Conf. Mining Softw. Repositories, 2016, pp. 468–471.

[26] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“DREBIN: Effective and explainable detection of android mal-
ware in your pocket,” in Proc. 21st Annu. Netw. Distrib. Syst. Secur.
Symp., 2014.

[27] M. Zheng, M. Sun, and J. C. S. Lui, “Droid analytics: A signature
based analytic system to collect, extract, analyze and associate
android malware,” in Proc. 12th Int. Conf. Trust, Secur. Privacy
Comput. Commun., 2013, pp. 163–171.

[28] L. Taheri, A. F. A. Kadir, and A. H. Lashkari, “Extensible android
malware detection and family classification using network-flows
and api-calls,” in Proc. Int. Carnahan Conf. Secur. Technol., 2019,
pp. 1–8.

[29] Dyninst, 2019. [Online]. Available: https://dyninst.org/
[30] L. Xue et al., “NDroid: Toward tracking information flows across

multiple android contexts,” IEEE Trans. Informat. Forensics Secur.,
vol. 14, no. 3, pp. 814–828, Mar. 2019.

[31] L. Xue, X. Luo, L. Yu, S. Wang, and D. Wu, “Adaptive unpacking
of android apps,” in Proc. 39th Int. Conf. Softw. Eng., 2017, pp. 358–
369.

[32] L. Xue et al., “PackerGrind: An adaptive unpacking system for
android apps,” IEEE Trans. Softw. Eng., vol. 48, no. 2, pp. 551–570,
Feb. 2022.

[33] Simple-deobfuscator, 2020. [Online]. Available: https://github.
com/SLenik/simple-deobfuscator

[34] M. Protsenko and T. M€uller, “Protecting android apps against
reverse engineering by the use of the native code,” in Proc. Int.
Conf. Trust Privacy Digit. Bus., 2015, pp. 99–110.

[35] Q. Wang et al., “NativeSpeaker: Identifying crypto misuses in
android native code libraries,” in Proc. 13th Int. Conf. Informat.
Secur. Cryptol., 2017, pp. 301–320.

[36] M. Sun and G. Tan, “NativeGuard: Protecting android applica-
tions from third-party native libraries,” in Proc. ACM Conf. Secur.
Privacy Wireless Mobile Netw., 2014, pp. 165–176.

[37] R. Fedler, M. Kulicke, and J. Sch€utte, “Native code execution con-
trol for attack mitigation on android,” in Proc. 3rd ACM Workshop
Secur. Privacy Smartphones Mobile Devices, 2013, pp. 15–20.

[38] M. C. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,
“RiskRanker: Scalable and accurate zero-day android malware
detection,” in Proc. 10th Int. Conf. Mobile Syst., Appl., Serv., 2012,
pp. 281–294.

[39] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative
android markets,” in Proc. 19th Annu. Netw. Distrib. Syst. Secur.
Symp., 2012.

[40] T. Ho, D. J. Dean, X. Gu, and W. Enck, “PREC: Practical root
exploit containment for android devices,” in Proc. 4th ACM Conf.
Data Appl. Secur. Privacy, 2014, pp. 187–198.

[41] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna,
“Execute this! analyzing unsafe and malicious dynamic code load-
ing in android applications,” in Proc. 21st Annu. Netw. Distrib.
Syst. Secur. Symp., 2014.

[42] Y. Zhou, K. Patel, L. Wu, Z. Wang, and X. Jiang, “Hybrid user-
level sandboxing of third-party android apps,” in Proc. 10th ACM
Symp. Informat., Comput. Commun. Secur., 2015, pp. 19–30.

[43] E. Athanasopoulos, V. P. Kemerlis, G. Portokalidis, and A. D. Ker-
omytis, “NaClDroid: Native code isolation for android
applications,” in Proc. 21st Eur. Symp. Res. Comput. Secur., 2016,
pp. 422–439.

[44] Y. Hong, Y. Wang, and J. Yin, “NativeProtector: Protecting
android applications by isolating and intercepting third-party
native libraries,” in Proc. 31st IFIP TC 11 Int. Conf. Syst. Secur. Pri-
vacy Protection, 2016, pp. 337–351.

[45] M. Spreitzenbarth, T. Schreck, F. Echtler, D. Arp, and J. Hoffmann,
“Mobile-sandbox: Combining static and dynamic analysis with
machine-learning techniques,” Int. J. Informat. Secur., vol. 14, no. 2,
pp. 141–153, 2015.

[46] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “CopperDroid:
Automatic reconstruction of android malware behaviors,” in Proc.
22st Annu. Netw. Distrib. Syst. Secur. Symp., 2015.

[47] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
Behavior-based malware detection system for android,” in Proc.
1st ACM Workshop Secur. Privacy Smartphones Mobile Devices, 2011,
pp. 15–26.

[48] M. Sun, T. Wei, and J. C. S. Lui, “TaintART: A practical multi-level
information-flow tracking system for android runtime,” in Proc.
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 331–342.

[49] D. Schoepe, M. Balliu, F. Piessens, and A. Sabelfeld, “Let’s face it:
Faceted values for taint tracking,” in Proc. 21st Eur. Symp. Res.
Comput. Secur., 2016, pp. 561–580.

[50] L. Xue, C. Qian, and X. Luo, “AndroidPerf: A cross-layer profiling
system for android applications,” in Proc. 23rd IEEE Int. Symp.
Qual. Serv., 2015, pp. 115–124.

[51] S. H. Kim, C. Sun, D. Zeng, and G. Tan, “Refining indirect call tar-
gets at the binary level,” in Proc. 28th Annu. Netw. Distrib. Syst.
Secur. Symp., 2021.

[52] D. Zeng and G. Tan, “From debugging-information based binary-
level type inference to CFG generation,” in Proc. 8th ACM Conf.
Data Appl. Secur. Privacy, 2018, pp. 366–376.

[53] E. Bauman, Z. Lin, and K. W. Hamlen, “Superset disassembly:
Statically rewriting x86 binaries without heuristics,” in Proc. 25th
Annu. Netw. Distrib. Syst. Secur. Symp., 2018. [Online]. Available:
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/
25/2018/02/ndss2018_05A-4_Bauman_paper.pdf

[54] A. Flores-Montoya and E. M. Schulte, “Datalog disassembly,” in
Proc. 29th USENIX Secur. Symp., USENIX Secur., 2020, pp. 1075–
1092. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/flores-montoya

Cong Sun (Member, IEEE) received the BS
degree in computer science from Zhejiang Uni-
versity, Zhejiang, China, in 2005 and the PhD
degree in computer science from Peking Univer-
sity, China, in 2011. He is currently a full profes-
sor with the School of Cyber Engineering, Xidian
University, China. His research interests include
information flow security, software security, and
program analysis.

Yuwan Ma received the MS degree majoring in
computer science from Xidian University, Xi’an,
China, in 2020. Her research interests include
Android security and binary analysis.

Dongrui Zeng received the BS degree in compu-
tational mathematics from Nanjing University,
Nanjing, China, in 2014, and the PhD degree in
computer science and engineering from Pennsyl-
vania State University, University Park, Pennsyl-
vania, in 2021. Currently, he is working with Palo
Alto Networks as a security research engineer.
His major research interests include software
security and program analysis.

1474 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 2, MARCH/APRIL 2023

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on January 08,2024 at 03:42:52 UTC from IEEE Xplore. Restrictions apply.

https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/jdereg/java-util
https://github.com/jdereg/java-util
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://dyninst.org/
https://github.com/SLenik/simple-deobfuscator
https://github.com/SLenik/simple-deobfuscator
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_05A-4_Bauman_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_05A-4_Bauman_paper.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/flores-montoya
https://www.usenix.org/conference/usenixsecurity20/presentation/flores-montoya

Gang Tan (Member, IEEE) received the bach-
elor’s (with Hons.) degree in computer science
from Tsinghua University, China, in 1999, and the
PhD degree from Princeton University, Princeton,
New Jersey, in 2005. He is currently a full profes-
sor with the Department of Computer Science and
Engineering, Pennsylvania State University, Uni-
versity Park, Pennsylvania. He leads the Security
of Software (SOS) Lab. His research interests
include the interface between computer security,
programming languages, and formal methods. He

has received an NSF CAREER award, two Google Research Awards,
and a Francis UptonGraduate Fellowship. He is amember of the ACM.

Siqi Ma received the BS degree in computer sci-
ence and technology from Xidian University,
China, and the PhD degree in information system
from Singapore Management University, Singa-
pore. She is currently a senior lecturer with the
University of New South Wales, Canberra Cam-
pus. Her research interests include software
security, mobile apps and IoT firmware.

Yafei Wu is currently working toward the MS
degree in the School of Cyber Engineering, Xidian
University, Xi’an, China, His research interests
includeAndroid security and program analysis.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

SUN ETAL.: mDEP: MUTATION-BASED DEPENDENCYGENERATION FOR PRECISE TAINTANALYSIS ON ANDROID NATIVE... 1475

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

