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Abstract—Location-Based Services (LBSs) are one of the most frequently used mobile applications in the modern society.

Geo-Indistinguishability (Geo-Ind) is a promising privacy protection model for LBSs since it can provide formal security

guarantees for location privacy. However, Geo-Ind undermines the statistical location distribution of users on the LBS server because of

perturbed locations, thereby disabling the server to provide distribution-based services (e.g., traffic congestionmaps). To overcome this

issue, we give a privacy definition, called DistPreserv, to enable the LBS server to acquire valid location distributionswhile providing users

with strict location protection. Then we propose a privacy-preserving LBS scheme to benefit both users and the server, in which a location

perturbationmechanism is designed to achieve the given definition under the guide of the incentive compatibility, and a retrieval area

determinationmethod is presented to ensure query accuracy of users by using the dynamic programming on the two-dimensional map

plane. Finally, we theoretically prove that the designedmechanism can achieve the definition of DistPreserv and the property of incentive

compatibility. Experimental explorations using a real-world dataset indicate that our proposal prominently improves the availability of

users’ location distributions by over 90%, while providing high precision and recall of queries.

Index Terms—Location privacy, query accuracy, location distributions, incentive compatibility, location-based services
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1 INTRODUCTION

WITH the growing popularity ofmobile devices equipped
with GPS chips and the increasing availability of wire-

less data connections, Location-Based Services (LBSs), which
enable a user to obtain real-time services related to his/her
current location, have gained much attention from both aca-
demic and industrial fields. A recent business research pre-
dicts that the market of global LBSs can rise at a robust 19.9%
CAGR (Compound Annual Growth Rate) between 2017 and
2025, where themarket will be worth US$99.77 billion [1].

These LBSs can facilitate the users’ daily lives, but still
cause serious privacy concerns.When users report their current

locations to query for nearby Points-of-Interests (POIs), the LBS
servermay collect their locations and learn about sensitive infor-
mation related to them such as home addresses, income
levels, etc., thereby posing threats to users’ privacy or even per-
sonal safety. Thus, the issue of location privacy is being a key
factor in determining the popularity of LBSs in the coming
years [2], [3]. To protect location privacy for LBSs, a series of
approaches have been proposed on the basis of traditional pri-
vacymodels, such as k-anonymity [4], l-diversity [5] and t-close-
ness [6], etc. Since these models are designed heuristically, they
cannot provide strict and formal privacy guarantees [7], [8], [9].
To solve the above issue, Geo-Indistinguishability (Geo-
Ind) [10] proposedbased ondifferential privacyprovides a strict
location perturbation paradigm for protecting users’ location
privacy. According to Geo-Ind, a user submits a perturbed loca-
tion and a retrieval size to get nearby POIs in a privacy-preserv-
ingway by adding noise to his/her current location. Thus, Geo-
Ind has become a hot research topic for location privacy and has
been put into practical use (e.g., SpatialVision, Location-Guard)
due to its strict privacy definition and convenient implementa-
tion [11], [12], [13], [14], [15].

Although Geo-Ind can protect a user’s location privacy
effectively, it undermines the statistical location distribution
of users on the LBS server since it adds noise in reported loca-
tions without considering the distribution. In fact, the statisti-
cal location distribution is important for LBSs since it enables
location service providers (i.e., LBS servers) to learn the over-
all user distribution on the spatial domain and further acquire
a real insight of spatial patterns of users. Specifically, location
distributions can be used for many purposes, such as detect-
ing the popularity of scenic spots, perceiving traffic jams, and
warning crowded areas during the COVID-19 pandemic,
etc. [16], [17], [18]. Nevertheless, existing Geo-Ind works
mainly focus on the location privacy protection on the user
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side, while neglecting the availability requirement of users’
location distributions on the server side, which results in false
statistical location distributions, as illustrated in Fig. 1. This
disables the LBS server to provide correct distribution-based
services, which will do harm to the promotion and adoption
of Geo-Ind in LBSs. Through extensive experiments we have
confirmed that the average statistical distribution changes
dramatically after users’ Geo-Ind location perturbations, as
shown in Figs. 5, 6, and 7.

To address this issue, it is critical to take the user distribu-
tion into account while generating reported noisy locations.
Therefore, from the perspective of the user distribution avail-
ability on the LBS server side, we give a new privacy defini-
tion that can provide users with provable location privacy
guarantees while allowing the LBS server to obtain the valid
distribution information from queries. Then a privacy-pre-
serving LBS scheme is presented to achieve the defined defi-
nition. As far as we know, we are the first effort to take into
account of the privacy-preserving statistical location distri-
bution of users in LBSs. Specifically, the major contributions
of this paper are summarized below:

� We give a new privacy definition, called DistPreserv,
as the enhancement of Geo-Ind with considerations of
users’ location distributions. Specifically, DistPreserv
largely maintains the users’ collective location distri-
butions on the basis of location privacy protection.
This feature is achieved by requiring the reported loca-
tions and true locations to be indistinguishable in both
euclidean distance and distribution differences.

� We design a privacy-preserving scheme for LBSs.
First, to achieve the definition of DistPreserv, a loca-
tion perturbation mechanism is designed according
to differential privacy exponential mechanism under
the guidance of incentive compatibility. Then, a
dynamic programming method on the two-dimen-
sional map plane is utilized to determine the retrieval
area, thereby achieving high accuracy of queries with
privacy guarantees.

� We provide theoretical analysis to show that our
scheme satisfies both the definition of DistPreserv and
the property of incentive compatibility, and analyze
that DistPreserv can achieve lower distribution diver-
gence. Furthermore, we conduct extensive experi-
ments using a real-world dataset to demonstrate that
our proposal prominently improves the availability of
user distribution by over 90% when compared with
the classic Geo-Ind approach.

In Section 2, we introduce some related works briefly. In
Section 3, we describe some preliminaries and problem for-
mulations. Section 4 presents the privacy definition in
detail. Section 5 gives our designed privacy-preserving
scheme. The theoretical analysis is provided in Section 6.
Experimental results are demonstrated in Section 7. Finally,
we give a conclusion in Section 8.

2 RELATED WORK

The location privacy protection for LBSs has attracted
much attention due to its necessity [2], and efforts to provide
users with location privacy have experienced a long-term
development.

2.1 Traditional Location Privacy Protection
Methods

To achieve the goal of location privacy, some works have
given suggestions relying on cryptographicmeasures such as
homomorphic encryption and Private Information Retrieval
(PIR) [19], [20], [21], [22], [23], but these solutions cannot be
widely deployed in practice due to heavy computational bur-
dens and little interactivity with existing LBSs [2]. To protect
location privacy more efficiently, a sequence of efforts have
explored this challenge by introducing computational pri-
vacy models (e.g., k-anonymity, l-diversity) into location pri-
vacy. Since the k-anonymity was proposed, there has been a
series of works using this notion to prevent users’ location
privacy from being leaked [4], [24], [25], where the intuitive
idea is to obscure the user’s true location with other k� 1
fake locations.

The above schemes equipped with k-anonymity do not
consider the semantics of k� 1 fake locations, thus several
works based on l-diversity [5] were promoted to provide
location privacy protection for LBSs [26], [27]. In l-diversity,
it is required to have l different semantic features among k
locations based on k-anonymity. However, l-diversity is still
claimed to be insufficient for location privacy in someworks,
thus the notion of t-closeness [6] is introduced. Instead of
just guaranteeing l-diversity of locations, t-closeness based
works further require that the distribution of the semantic
features inside k anonymous locations is as similar as possi-
ble to the distribution of these features in the total number of
users [28], [29]. Nevertheless, these privacy models cannot
render formal privacy guarantees since they are designed
according to the methodology of heuristics thereby lacking a
strictly theoretical basis [2], [9].

2.2 Differential Privacy and Geo-Ind Based
Approaches

To deal with the above issue, Andr�es et al. [10] proposed a
location privacymodel namely Geo-Ind to protect LBS users’
location privacy effectively. Specifically, they first gave the
definition of Geo-Ind by adapting generalized differential
privacy[30] to the LBS scenario. Then they designed a loca-
tion perturbation mechanism to achieve this definition
through the distribution of planar Laplace. After that, they
discussed the accuracy of the LBS query and gave a method
to calculate the retrieval radius in the query. Similar to the
differential privacy, the outstanding characteristic of Geo-
Ind is that no matter what priori knowledge the adversary

Fig. 1. A false statistical location distribution can be derived by the ser-
vice provider resulting from perturbed locations in Geo-Ind.

3288 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 6, JUNE 2023



has, it cannot getmore about the user’s true location based on
observing the reported location generated by the Geo-Ind
mechanism. This makes Geo-Ind an attractive privacymodel
to protect location privacy in LBSs.

In recent works, taking into account the constraints of
road networks, Qiu et al. [31] designed a location perturba-
tion mechanism to implement Geo-Ind on road networks
with the help of linear programming. Besides, aiming at the
vulnerability of existing Geo-Ind mechanisms under long-
term observation attacks, Niu et al. [32] combined Geo-Ind
with k-anonymity and proposed a new location protection
mechanism, which uses the differential privacy exponential
mechanism to generate the perturbed location from prede-
termined possible outputs. Since the above works did not
consider the issue of privacy budget consumption of the
user, Hua et al. [33] proposed a location perturbation mecha-
nism that divides a targeted place into cell layouts to slow
down the privacy budget consumption of Geo-Ind. By shift-
ing perturbed locations to the center points of their corre-
sponding cells, this mechanism reduces the privacy cost for
a single LBS query.

However, the remarkable defect shared by existing
schemes is that they do not take into account of the availabil-
ity of user distribution, which severely disrupts the spatial
patterns of users, regardless of its critical values on LBSs.

It is worth noting that some works [17], [34], [35] adopt
local differential privacy [36], the variant of differential pri-
vacy for user-specified privacy intensity, to keep users’
whereabouts private while allowing the server to obtain
their distribution information. However, the major differ-
ence between these works and our work is that they can not
provide users with LBSs since they mainly focus on acquir-
ing users’ collective information in a privacy-preserving
way. Without the restriction of LBS accuracy, users in these
works can produce pseudo-locations without considering
the distance between the fake location and true location,
which is not allowed in our scenario.

3 PRELIMINARIES AND PROBLEM FORMULATIONS

In this section, we first concisely introduce some preliminar-
ies, and then describe our system and threat model. Finally,
we present the design goal of our work. The symbols and
notations used frequently are listed in Table 1.

3.1 Preliminaries

3.1.1 Differential Privacy and Geo-Indistinguishability

Differential privacy is an attractive privacy model first pro-
posed in the field of statistical databases [37], which can pre-
vent the user’s privacy from being revealed from aggregated
queries. Since it can provide a formal privacy guarantee
abstracting from the adversary’s priori knowledge, differen-
tial privacy has become themainstreamparadigm in the field
of privacy protection.

Definition 1 (differential privacy). A randomized algorithm
M is "�differential privacy if for all subset S � RangeðMÞ
and all datasets x, y with x� yk k1 � 1, it has Pr½MðxÞ 2
S� � expð"ÞPr½MðyÞ 2 S�.
In the above definition, " is a positive real number and

reflects the level of required privacy, and a smaller " implies

the higher expected privacy level. Besides, Hamming dis-
tance is used to measure the difference between the mecha-
nism’s possible inputs and it is required that the difference
of the compared inputs is at most one Hamming distance in
the definition. Thus, to let the metrics of distance no longer
be confined to Hamming distance and the difference of
inputs no longer limited by one, the generalized differential
privacy [30] is developed as a more abstract privacy defini-
tion, and then it is adapted to the scenario of LBSs by intro-
ducing geo-indistinguishability [10].

Definition 2 (Geo-indistinguishability). A randomized
algorithm K : X ! DðZÞ is "-geo-indistinguishability iff
8x; x0 2 X it has dD K xð Þ; K x0ð Þð Þ � "d x; x0ð Þ.
In this definition, X and Z denote the set of a user’s all

possible true and perturbed locations, respectively. Besides,
DðZÞ denotes a probability distribution on Z, so that KðxÞ
indicates the distribution of possible perturbed locations
while the true location is x. Besides, it is defined that
dD $1; $2ð Þ ¼ supZ�Zj ln$1 Zð Þ

$2 Zð Þ j to measure the difference
between two distributions $1 and $2 with the rule that
j ln$1 Zð Þ

$2 Zð Þ j ¼ 0 if both $1 Zð Þ and $2 Zð Þ are zero, and

j ln$1 Zð Þ
$2 Zð Þ j ¼ 1 if only one of them is zero. " is the privacy

parameter set by the user and d x; x0ð Þ denotes the euclidean
distance between x and x0. Note that this definition can also
be presented as K xð Þ Zð Þ � e"d x;x0ð ÞK x0ð Þ Zð Þ for all x; x0 2 X ,
Z � Z, in which KðxÞðZÞ denotes the probability of the
user’s perturbed location z being in the set Z while his/her
true location is x.

Intuitively, the privacy of Geo-Ind comes from requir-
ing that any two close locations should be perturbed to
the same location with indistinguishable probabilities. If
the user intends to achieve stronger privacy protection,
he/she needs to make the value of the privacy parameter
" smaller.

3.1.2 Incentive Compatibility

Incentive compatibility [38] is the concept to characterize
those mechanisms in which participants would not find it
advantageous to violate the rules of the process, and these
rules are formulated to provide public benefits. This
means that individual interests and collective interests are
compatible, and no one can expand their own interests by

TABLE 1
Symbols and Notations Used in Our Paper

Symbol Description

" The privacy parameter set by a user
M Randomized mechanism to achieve differential privacy
K Randomized mechanism to achieve Geo-Ind
K Randomized mechanism to achieve DistPreserv
d �; �ð Þ euclidean distance between two locations
Prð�Þ Probability of an event
x0 True location of a user
z Reported location of a user for the LBS query
G The considered macro area where the user locates
DG Current users’ location distribution in G
fxi The users’ request rate at location xi
u Utility function to score possible perturbed locations
c The accuracy requirement of the LBS query
Cðx; rÞ A circle with a center x and a radius r
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damaging collective interests. Formally, the definition of
incentive compatibility can be defined below.

Definition 3 (incentive compatibility). If a mechanism
satisfies the incentive compatibility, the following condition
Useri 2 fUseriji 2 N�g: viðxiÞ 	 við~xiÞ should be hold for any
situation that satisfies bðx1;x2; . . . ;xnÞ 	 bð~x1; ~x2; . . . ; ~xnÞ,
where við�Þ represents the individual utility obtained by Useri,
and bð�Þ represents the public utility obtained by users for a spe-
cific strategy combination of them. xi and ~xi represent the strate-
gies that Useri follows and not follows, respectively. Specifically,
in the strategy of xi, Useri reports his/her true location to query if
he/she is in an insensitive location without privacy protection.
Otherwise, he/she adopts our proposal to perform the LBS query
instead of reporting true location or adoptingGeo-Ind approaches.

Note that in some scenarios (e.g., auctions), bðx1;x2; . . . ;
xnÞ is simply defined as v1ðx1Þ þ v2ðx2Þ þ . . .þ vnðxnÞ, yet in
our scenario viðxiÞ represents the comprehensive services
received by Useri according to his/her privacy preference,
and bðx1;x2; . . . ;xnÞ denotes the availability of overall users’
distributions counted by their reported locations.

3.2 System Model & Threat Model

System Model. In our work, the system model is consistent
with the general LBS framework that consists of users and an
LBS server [2]. We consider a set of users that send queries
based on their locations to the LBS server to obtain nearby
POIs (e.g., discovering nearby hotels or restaurants). The
location contained in each query can be the current location
of the user or another one generated according to the user’s
different privacy requirements. Users can obtain two aspects
of utility from LBSs, one is the individual utility achieved by
obtaining the information of nearby POIs from the LBS
server, the other is the public utility which corresponds to the
user distribution aggregated from their reported locations.
At the same time, users expect their whereabouts to be hid-
den from the LBS server that can observe the locations in the
queries. The framework of the system is depicted in Fig. 2.

Instead of making users simply submit their locations as
LBS queries, we propose a new paradigm of user-server
interaction to ensure that the user distribution does not col-
lapse while protecting location privacy of users. When a
user from U ¼ fUseriji 2 N�g initiates an LBS query, he/she
first reports his/her macro location G (e.g., the city) to the
LBS server to request the current user distribution DG in
this area. After receiving the user’s macro location G, the
LBS server returns DG to the user as a response. Then, the
user adds noise to his/her location to produce a perturbed
location according to the true location and DG (which is
detailed in Algorithm 1), and reports the pseudo-location to

the LBS server along with the retrieval radius for querying
POIs. After receiving the query, the LBS server retrieves
POIs in its database according to the received location and
the retrieval radius, and then returns the query results to
the user. Finally, the user filters the received POIs based on
his/her true location and actual area of interest.

Threat Model. Similar to the general assumption for LBSs,
the LBS server itself is regarded as the honest-but-curious
adversary [39], [40], [41], [42], which means that it will hon-
estly provide services to users according to established
rules but may be curious to infer users’ true locations from
their LBS queries. More formally, we introduce an adver-
sary A� whose target is the LBS server. The capability of
A� is described as follows: A� can compromise the LBS
server to infer users’ true locations based on the received
LBS queries.

Moreover, it is assumed that the users in the system are
rational. Specifically, when the user is currently privacy-
insensitive, he/she prefers to report his/her true location in
the LBS query for achieving better services. Otherwise, he/
she prefers to perform a privacy-preserving LBS query to
make his/her whereabouts private. In both cases above, the
user does not need to care about the privacy of other users.
Besides, since the LBS server is considered honest-but-curi-
ous, it cannot be seen as a rational participant, but only as
an adversary.

3.3 Design Goals

In our work, we aim at protecting the location privacy of
users in the process of LBS query, while making their over-
all location distribution obtained by the LBS server as avail-
able as possible. In this way, both users and servers can
gain benefits, which shows that our work is promising in
the actual economic environment. Besides, if users adopt
our proposal to perform privacy-preserving LBS queries,
they need to obtain useful results, which means that the
accuracy of the query should be guaranteed. It is worth not-
ing that in our proposal, users are allowed to submit true
locations for LBS queries if they are in an insensitive loca-
tion or have no privacy requirements. In this case, the inter-
ests of users who adopt privacy-preserving queries should
not be reduced. In general, the design goals of our work can
be summarized as follows:

1) Location privacy: Users’ location privacy should be
protected while querying LBS;

2) Distribution preserving: Users’ privacy-preserving LBS
queries should provide the LBS server with valid
location distribution information asmuch as possible;

3) Incentive compatibility: Both users and the LBS server
should benefit from this model, and the interests of
users who adopt privacy-preserving queries should
not be harmed by other users performing true loca-
tion queries;

4) LBS accuracy: For a single user, the accuracy of his/
her LBS query should be guaranteed.

To achieve these goals, wewill first give a newprivacy def-
inition considering the availability of the distribution in Sec-
tion 4, and then propose a location privacy-preserving
scheme to keep the user’s whereabouts private while query-
ing LBSs in Section 5.

Fig. 2. System model of our proposal.
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4 DISTPRESERV: A NEW PRIVACY DEFINITION

Note that all paradigms of location privacy are essentially
the trade-off between privacy and utility [2]. Compared
with the existing location perturbation models in which the
trade-off is made between each user’s privacy and his/her
individual utility, we further treat the user distribution as
the public utility by adding a new dimension to this trade-
off, thereby effectively protecting the users’ location privacy
while maintaining the availability of the user distribution as
much as possible.

Therefore, inspired by generalized differential privacy
and Geo-Ind, we propose a new notion of location privacy,
named DistPreserv. It is worth noting that in DistPreserv,
euclidean distance is not the only metric for measuring the
difference between alternative perturbed locations on the
plane. The metrics further include a special attribute we
defined between these locations, which is the difference in
“request rate”. Specifically, the users’ request rate fxi

at
location xi is defined as fxi

¼ nxi
ntotal

, where nxi is the number
of queried users at xi, and ntotal is the total number of users.
Intuitively, the request rate fxi

reflects the normalized pro-
portion of users who have submitted queries at xi to the
total number of users. Besides, we define a mechanism K as
a probabilistic function that assigns a probability distribu-
tion to each location xi 2 G, from which the mechanism can
determine the sampling probability of each location when
the user is at x0. Then we let KðxÞðzÞ denote the probability
of perturbing x to z, and dð�; �Þ denote the euclidean metric.
Considering the dynamic characteristics of user distribu-
tions over time, the time is treated as continuous time slots,
and the request rate will be computed independently in
each time slot. Formally, the definition of DistPreserv can be
given as follows.

Definition 4 (DistPreserv). In the privacy-preserving LBSs,
the location perturbation mechanism K : X ! DðZÞ achi-
eves "�DistPreserv iff it satisfies that KðxÞðzÞ �
e"�dðx;x

0Þ� fx�fx0j jKðx0ÞðzÞ, where x; x0 2 X , dð�; �Þ represents
euclidean distance and fx; fx0 2 ½0; 1� are the request rates
at location x; x0, respectively.

This definition requires x and x0 to be more indistinguish-
able on producing the pseudo-location z as the similarity
increases between x and x0, where the criterion of “similarity”
considers both euclidean distance and the request rate in that
either dðx; x0Þ or fx � fx0j j can make sense for the measure-
ment. Note that our DistPreserv is actually a tripartite trade-
off among user privacy, individual utility and public utility,
which can make the user distribution, a typical public utility,
retained asmuch as possible.

Since DistPreserv adds public utility as a new dimension,
it is actually an enhancement of Geo-Ind. Specifically, we
review the definition of DistPreserv, and there is KðxÞðzÞ �
e"�dðx;x

0Þ� fx�fx0j jKðx0ÞðzÞ. Then we rewrite it as KðxÞðzÞ �
eð"� fx�fx0j jÞ�dðx;x0ÞKðx0ÞðzÞ and denote "0 ¼ " � jfx � fx0 j. From
that we get KðxÞðzÞ � e"

0 �dðx;x0ÞKðx0ÞðzÞ, which is a formula-
tion in the form of Geo-Ind. Besides, due to fx; fx0 2 ½0; 1�, it
is clear that "0 � ", which means that a mechanism satisfying
"�DistPreserv can also meet the privacy of "0�Geo-Ind. As
the request rate fx0 of each location x0 in G is different, the
privacy level obtained from a DistPreserv mechanism is

equivalent to applying Geo-Ind protection of different
parameters "0 to different potential perturbed locations x0

adaptively. It is worth noting that for each location x0, the
level of privacy provided by "�DistPreserv cannot be lower
than that of privacy provided by "�Geo-Ind due to "0 � ".
This also means that under the same privacy budget, Dis-
tPreserv is a stronger privacy definition than Geo-Ind. In
fact, since the sum of request rates of all locations in G is 1,
if and only if the request rate at the user’s true location is 1,
and the request rates at all other locations are 0,
"�DistPreserv is completely degraded to "�Geo-Ind.

The inherent reason that DistPreserv is a stronger pri-
vacy definition than Geo-Ind is that, although the introduc-
tion of request rates in the privacy definition is to retain
users’ location distribution as much as possible, the differ-
ence of request rates can also reflect specific privacy
demands. Specifically, the jfx � fx0 j term in the definition
implies that the privacy level should be increased as the
request rate is closer to that at the user’s true location, i.e.,
the closer request rate with the true location requires the
greater degree of indistinguishability. This characteristic
reflects that the proximity of request rates implies a certain
degree of homogeneity of locations [43]. That is, different
locations with similar request rates are more likely to be
semantically identical locations. Thus, requiring the per-
turbed location to be indistinguishable on the request rate
can not only achieve the preservation of location distribu-
tions, but also protect the user’s semantic location privacy in
the sense of request rates. Under these circumstances, if the
request rates of x 2 G are equal (i.e., the request rates is uni-
formly distributed in G), x and x0 should be completely
indistinguishable according to the definition, which implies
that the user should adopt the uniform distribution to gener-
ate his/her perturbed location (as detailed in Algorithm 1).

It is worth noting that the mathematical form of definition
4 also satisfies dx�privacy of the generalized differential pri-
vacy [30] iff dxðx; x0Þ ¼ " � d0ðx; x0Þ and d0ðx; x0Þ ¼ dðx; x0Þ �
fx � fx0j j. Thus, DistPreserv can also be regarded as another
concretization of the abstract dx�privacy by considering the
new aspect of location distribution of users on the basis of
Geo-Ind. Besides, the reason d0ðx; x0Þ is defined with multi-
plication (i.e., dðx; x0Þ � fx � fx0j j) instead of addition (i.e.,
dðx; x0Þ þ fx � fx0j j) is that dðx; x0Þ and fx � fx0j j are observa-
tions from different dimensions to measure the location dif-
ferences. Since dðx; x0Þ 2 Rþ and fx � fx0j j 2 ½0; 1�, making
d0ðx; x0Þ ¼ dðx; x0Þ � fx � fx0j j can allow dðx; x0Þ and fx � fx0j j
to make sense together for the measurement of location
differences.

5 PRIVACY-PRESERVING LBS SCHEME

In our proposal, to establish a research foundation of the new
privacy paradigm, we only discuss the situation where each
user performs a single LBS query in a time slot. To this end,
we use the euclidean metric to measure the geographical dis-
tance between locations and discretize the area G into a grid
to facilitate computer processing. In addition, we regard a sin-
gle cell in the grid as the basic observation unit of locations,
whichmeans that one cell in the grid corresponds to one loca-
tion in G. Thus, we use the terms “location(s)” and “location
cell(s)” interchangeably in the following discussions. In this
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setting, the distance between locations is measured by their
cell centers. Specifically, in this section we first give an over-
view of our proposed scheme, and then give a detailed expla-
nation of the scheme process.

5.1 Overview

To get nearby POIs while protecting location privacy, a user
should perturb his/her current location to produce a
pseudo-location. In this process, the user first submits a
macro area to get the information of user location distribu-
tions in this area. Note that if he/she merely submits this
pseudo-location to the LBS server for querying, the server
will not know how large area to retrieve the POI for him/
her. Thus, to perform the LBS query, the user also needs to
determine the retrieval area to acquire POI information,
where the generated pseudo-location is the center of the
retrieval area. Once the pseudo-location and the retrieval
area are both clarified, the user can perform the LBS query
to acquire information about nearby hotels, restaurants and
so on.

On the other side, the LBS server listens and receives
users’ queries, and then retrieves and returns POI informa-
tion. Besides, it can count the valid user location distribu-
tion of the current time slot from the locations reported by
users, regardless of whether the reported location is true or
perturbed. Generally, the overview of our scheme can be
illustrated in Fig. 3.

It is worth noting that in our work, users do not care
about the interests of other users when perturbing their
locations, nor do they consider whether the LBS server can
obtain valid user distribution information. However, by
adopting our scheme, users can get valid user distribution
and nearby POIs from the LBS server, even though in this
process they only pursue their own needs of privacy-pre-
serving LBSs. In the following subsection, we give detailed
designs of the privacy-preserving LBS scheme.

5.2 Designs in Detail

Corresponding to the previous discussion, we first intro-
duce the method of generating a pseudo-location for a user,
then explain how the user can determine the retrieval area
based on the pseudo-location and the expected accuracy of
returned results. Finally, we give a method for the LBS
server to obtain the approximate distribution of users while
providing LBS services.

1) Location Perturbation Mechanism for User. To produce
a pseudo-location for privacy, the user should first get
his/her current location x0 through GPS on the mobile
device. Then, he/she submits the macro area (e.g., city

and district) to the LBS server to request the latest user
distribution grid DG within this area instead of directly
reporting the true location. In this way, the user can
obtain the distribution information to acquire distribu-
tion-related services. At the same time, this approach is
necessary for the LBS server to infer that the user is in
Beijing instead of Shanghai to provide such as weather
services, etc.

Following the above steps, the user maps his/her true
location to the obtained distribution DG and expects to pro-
duce a perturbed location according to euclidean distance
and the request rate difference between the user’s true loca-
tion x0 and other locations xi 2 G. To make this process sat-
isfy DistPreserv, we will adapt the differential privacy
exponential mechanism [44]. Our goal is to protect the
user’s location privacy by making his/her true location
indistinguishable from its similar locations measured by
euclidean distance and the request rate, which means that
the user is required to perturb his/her true location to a
more similar location in terms of the space and the request
rate with a higher probability.

To this end, a suitable utility function u : G2 ! R needs
to be designed to evaluate the utility of each discrete loca-
tion cell xi 2 G. Specifically, we take uðx0; xiÞ ¼ �dðx0; xiÞ �
jfx0 � fxi j, where x0 and xi are location cells in G, and fx0
and fxi

represent the request rates at x0 and xi, respectively.
To determine the selection probability of each location in G,
the sensitivity of the utility function u : G2 ! R can be intro-
duced in our scenario. Intuitively, the sensitivity of the util-
ity function reflects the maximum change in the utility
value when the difference between alternative inputs is lim-
ited within 1 under at most one random unit metric. Since
the designed utility function contains two different metrics
(i.e., dðx0; xiÞ and jfx0 � fxi

j), its sensitivity can be described
as the maximum change in the utility value uðx0; xiÞwhen x0

changes at most 1 under one random metric while being
fixed under another metric. Specifically, we let Gðx0; x00Þ
denote the constraint that x0 changes at most 1 under one
randommetric and is fixed under anothermetric, where x

0
0 2

G is the comparison location of x0. Then the constraint
Gðx0; x

0
0Þ can be specified as Gðx0; x00Þ ¼ ðdðx0; x

0
0Þ � 1^ jfx0

�
f
x
0
0
j ¼ 0Þ _ ðdðx0; x

0
0Þ ¼ 0 ^ jfx0

� f
x
0
0
j � 1Þ. According to it,

the sensitivity of the utility function can be formally defined
as

Du ¼ max
xi2G

max
Gðx0;x00Þ

juðx0; xiÞ � uðx00; xiÞj;

where x0; x
0
0 2 G represent the user’s true locations before

and after the change, xi 2 G represents any observed loca-
tion. The constraints of euclidean distance and request rates
in the sensitivity can be illustrated in Fig. 4, respectively.
Combining the formalization of the utility function, it can
be readily obtained that Du ¼ 1.

Based on the designed utility function, the differential
privacy exponential mechanism can be invoked to select a
pseudo location in G as the reported location for the query,
by which the whole process satisfies the definition of Dis-
tPreserv (which is proved in section “6.1 Privacy Analysis”).
The detailed algorithm for generating the perturbed loca-
tion is given in Algorithm 1.

Fig. 3. Overview of the privacy-preserving LBS scheme.
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Algorithm 1. Location Perturbation Mechanism K
Input: x0, ", G
Output: z
1: sum 0
2: for xi in G do
3: // Compute utility values for xi 2 G

4: uðx0; xiÞ  �dðx0; xiÞ � fx0 � fxi

��� ���
5: expweighti e

"�uðx0 ;xiÞ
2

6: sum sumþ expweighti
7: end for
8: // Generate the distribution for drawing xi

9: for xi in G do
10: PrðxiÞ expweighti

sum

11: end for
12: Randomly sample xk according to the computed probabilities.
13: z xk

14: return z

The time complexity of Algorithm 1 is OðjGjÞ, and the
space complexity is OðjGjÞ, where jGj is the number of
locations in G. By performing this algorithm, the user can
get a perturbed location z to report for privacy-preserving
LBSs.

2) Determination of Retrieval Area. A user expects to get
information about the surrounding POIs after generating the
perturbed location. This is because if the perturbation of the
true location prevents users from getting their desired POI
information from the LBS server, the location perturbation
will be meaningless and unattractive. Similar to most real-
world LBSs (e.g., Google Map, AMAP) using the circular
area to retrieve, we also make our retrieval area as a circle to
keep it compatible with existing commercial applications. In
this way, the determination of the retrieval area is actually
the determination of the center point and retrieval radius.
Obviously, the reported pseudo-location generated by Algo-
rithm 1 is the center point for retrieval. Thus, we mainly dis-
cuss the determinationmethod of the retrieval radius below.

Ideally, the Area of Retrieval (AOR) should always fully
contain the area that the user is really interested in, because
in this case the user can acquire all the POIs he/she expects.
However, due to the random nature of the location perturba-
tion as well as the uncertainty of the size of the user’s Area of
Interest (AOI), making the AOR always cover the AOI will
reveal that the user is always inside the AOR, thereby
compromising the user’s location privacy. Therefore, the
radius of AOR should be determined independently with the
perturbed location z, which also means that we cannot make
AOI always be fully contained in AOR. In this way, the pro-
cess of retrieval radius determination can provide “plausible
deniability” where privacy comes from it [45].

Based on the above discussion, we introduce the notion
of LBS accuracy [10], which is used to indicate the proba-
bility that the user obtains full POI information he/she
expects, that is, the probability that AOR fully contains
AOI. Specifically, we make rAOR and rAOI to denote the
radius of AOR and AOI. Cðx; rÞ represents a circle with a
center x and a radius r, and c denotes the accuracy require-
ment. Then we say that (K; rAOR) is ðc; rAOIÞ-accurate, iff
the probability of Cðx; rAOIÞ (i.e., AOI) being fully con-
tained in CðKðxÞ; rAORÞ (i.e., AOR) is no less than c for all
x 2 G.

Based on that, our goal is to determine an appropriate
rAOR with any given ðc; rAOIÞ such that (K; rAOR) meets
ðc; rAOIÞ-accurate. Although a simple way to achieve this
goal is to set rAOR to a very large constant, this method will
cause users to receive a large amount of returned POIs,
resulting in excessive bandwidth consumption. Thus, to
reduce bandwidth cost as much as possible, the rAOR we
want should be the minimum value meeting the accuracy
requirement.

To achieve this goal, we should note that for any x0, there
is dðx0; zÞ � a with the probability of no less than sðaÞ ¼P

xi2Cðx0;aÞ PrðxiÞ, where a 2 R�, z ¼ Kðx0Þ, and PrðxiÞ is the
probability that xi 2 G is selected as the perturbed location,
which is computed by the (Line 1–Line 11) of Algorithm 1.
Besides, xi 2 C x0;að Þ indicates the situation that dðx0; xiÞ �
a. From this view, we can get that when c � sðaÞ, the mech-
anism K satisfies the notion of ða; cÞ-usefulness [46], which
means that for any location x0, the reported location z ¼
Kðx0Þ satisfies dðx0; zÞ � a with the probability at least c.
Combined with the notion of ðc; rAOIÞ-accuracy, we can get
that if a mechanism K is ða; cÞ-useful, then K; rAORð Þ satisfies
ðc; rAOIÞ-accuracy if and only if rAOR 	 rAOI þ a. Due to c �
sðaÞ, we can have a 	 s�1ðcÞ, which requires rAOR 	
rAOI þ s�1ðcÞ. Therefore, in order to satisfy ðc; rAOIÞ-accu-
racy, the minimum rAOR that meets the accuracy require-
ment is rAOR ¼ rAOI þ s�1ðcÞ.

Note that s�1ðcÞ is the smallest a that makesP
xi2Cðx0;aÞ PrðxiÞ no less than c, we can rewrite it as s�1ðcÞ ¼

argmina j
P

xi2Cðx0;aÞ PrðxiÞ � cj while
P

xi2Cðx0;aÞ PrðxiÞ 	 c.
Since the map plane is divided into grids and the request
rate at xi 2 G is unpredictable, there is no simple analytical
function relationship between the selection probability of xi

and the user’s true location x0. Considering that these prob-
abilities are known to us in Algorithm 1, we adopt the
approach of dynamic programming to calculate s�1ðcÞ to
avoid repeated considerations of the probability at each
location.

Our basic approach is to examine the probability sum for
the candidate locations in Cðx0;aÞwhen a gradually increases
with a unit distance step, that is, the sum of all PrðxiÞ satisfy-
ing dðx0; xiÞ � a is denoted as P. The purpose of utilizing
dynamic programming is that the selection probability of
each location cumulated inP will not be traversed repeatedly
when a is explored from a small value to a large value. To
this end, we dynamically update P when a increases by
examining location grid layers in turn according to the dis-
tance between x0 and each layer. Within each quadrilateral
layer of the grid, the location xi is also traversed from near to
far according to dðx0; xiÞ. In this process, we record the start-
ing sequence of the grid layer where there are location cells

Fig. 4. Illustration about the constraints of distance and request rate.
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that still have not been traversed, and the current traversal
position of each layer. As probabilities within all location
cells of the starting traversal layer are counted into P, the
ordinal number of the starting traversal layer is increased
by one (i.e., a unit length of distance). In the process of
cumulation, while P is no less than c for the first time, a at
that time is s�1ðcÞ.

In terms of procedural details of this algorithm, we use
the array Tr to store the latest position for traversal in each
quadrilateral layer, and denote startLayer as the ordinal
number of the first remaining layer that has not been fully
traversed. Note that while we say that the algorithm traver-
ses to the Tr½k�’th position of the k’th quadrilateral layer, we
mean to count four probabilities of positions that are equi-

distant from x0 with distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ Tr½k�2

q
at the same time.

The detailed process for the retrieval radius determination
is shown in Algorithm 2.

Algorithm 2. Determination of the AOR Radius

Input: x0, rAOI ,DG, c
Output: rAOR

1: Tr Declare an empty array
2: P  0
3: // Store the first remaining layer that is not fully traversed
4: startLayer 1
5: for r from 1 to1 do
6: Tr½r�  0 // Traverse each layer from near to far
7: for k from startLayer to r do
8: Traverse xi in k’th layer from position Tr½k�, and:
9: if xi meets r� 1 � dðx0; xiÞ � r then

10: P  P þ PrðxiÞ
11: end if
12: if P 	 c then
13: // The accuracy requirement is achieved
14: Break all loops
15: end if
16: Update Tr½k� to the beginning position not traversed
17: end for
18: Update startLayer to the beginning layer not fully

traversed
19: end for
20: rAOR  rAOI þ r
21: return rAOR

The essence of Algorithm 2 is to traverse the growing cir-
cular area on the grid plane. In Algorithm 2, the time and
space complexities are both Oð Gj jÞ, and the effect achieved
by this algorithm is to determine the value of rAOR that satis-
fies the requirement of ðc; rAOIÞ-accuracy by using the
dynamic programming.

3) Query Process and User Distribution Generation. In order
to query POIs near the current locations and obtain the
distribution information in their macro areas in a privacy-
preserving manner, the process required by users for
obtaining services is: (1) Perform a pre-query. Specifically,
the user sends his/her macro position G to the LBS server,
and then obtains the user distribution information DG in G
as its public utility; (2) Generate perturbed location z and
retrieval radius rAOR according to Algorithms 1 and 2,
respectively. Then the user reports them to the LBS server
to obtain POIs in AOR; (3) The user filters the obtained

POIs according to his/her AOI, thereby obtaining individ-
ual utility.

Since the location distribution of users is not static, the
LBS server has to dynamically maintain and update the
user distribution. Our approach is to discretize continuous
time into consecutive equal time slots and make the LBS
server always maintain the user distribution in the latest
time slot. Therefore, the LBS server performs dynamic
updates of the distribution in the process of counting
users’ reported locations. Specifically, the steps performed
by the LBS server are: (1) The server waits for and receives
the users’ pre-queries. If it receives a pre-query in the time
slot i, it returns the global user distribution DG aggregated
in the time slot i� 1 in macro position G; (2) The LBS
server receives the reported location and retrieval radius
submitted by the user, and then returns the POIs in the
AOR; (3) When the time slot iþ 1 arrives, the LBS server
updates the distribution in the time slot i according to
reported locations collected in time slot i. The processing
steps of the LBS server in the time slot i are shown in
Algorithm 3.

Algorithm 3. User Distribution Generation Process on
Server

Input: z, rAOR

Output:Di�1
G , POIs in AOR

1: Initialize U ðiÞ ¼ ?

2: According to reported locations fxði�1Þu ju 2 U ði�1Þ; xði�1Þu 2 Gg
collected in time slot i� 1, count and obtain
fðx; kÞjx 2 G;k 2 Nþg

3: Normalize fðx; kÞjx 2 G; k 2 Nþg to getDi�1
G

4: Receive a pre-query from Userk
5: RespondDi�1

G within G to the user
6: Receive z and rAOR reported by Userk
7: Retrieve POIs in AOR, then respond the retrieved POIs
8: if Userk =2 U ðiÞ then
9: add Userk to U ðiÞ

10: add x
ðiÞ
k to fxðiÞu ju 2 U ðiÞ; xðiÞu 2 Gg

11: end if

In Algorithm 3, the LBS server initializes and maintains a
set of user identifiers at each time slot to record users having
initiated queries in this time slot. When a pre-query of the
user is received, the LBS server returns the distribution
information to the user based on the reported locations col-
lected in the previous time slot, and records the location
information of users reported in the current time slot. It is
worth noting that the cold start process (i.e., the initializa-
tion of the distribution DG) at the very beginning of the sys-
tem operation needs to be discussed. Specifically, to reflect
the location distribution of users, the initial DG should not
be randomly generated or artificially set. Instead, since the
existing LBS service providers (e.g., Google Map, Amap,
etc.) have been stably operated for a long time, they can
count users’ location distributions through almost real-time
received locations. Thus, the LBS server can set the initial
DG to the distribution obtained from its previous non-pri-
vacy-preserving services. This also means that, in real-
world business operations, the service provider does not
need to start from scratch for additional privacy-preserving
functions. Instead, the service provider can directly apply
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DistPreserv based on its obtained statistical location distri-
bution, which also makes DistPreserv more potentially
practical. Besides, the operation of line 2 in the algorithm is
flexible, because the diversified implementations of LBS
servers allow them to obtain valid location distributions in
various ways as far as possible. For example, the operator of
LBSs may set privacy protection options in the user-side
APPs, so that the client application can identify whether the
user has performed location privacy protection. In this case,
the LBS server can count location distributions of users who
report true locations following the default configuration.
Locations reported by users who adopt privacy protection
are excluded in the distribution statistics.

Through Algorithm 3, users who query in the time slot i
can obtain user distributions in their areas and POI informa-
tion near their whereabouts. Meanwhile, the server can pro-
vide users with LBS services while gaining knowledge about
overall users’ distributions. We prove in Section 6.4 that our
proposal is incentive compatible, which also means that no
user can increase his/her own interests by harming the collec-
tive interests, thereby ensuring the feasibility and stability of
the entire system. The time complexity of Algorithm 3 is
O
ð1Þ
time þO

ð2Þ
time, where O

ð1Þ
time represents the time complexity of

Step 2 in the algorithm, and O
ð2Þ
time is the time complexity of

Step 7 in the algorithm. They are all related to the specific
implementation of the LBS server. The space complexity is
Oð1Þspace þOð2Þspace, where Oð1Þspace is the space complexity imple-
mented by the LBS server to store fxði�1Þu ju 2 U ði�1Þ; xði�1Þu 2
Gg, and Oð2Þspace is the space complexity implemented by the
LBS server to store fðx; kÞjx 2 G;k 2 Nþg. They are also
related to the detailed design of the data structure on the LBS
server.

6 THEORETICAL ANALYSIS

In this section, we perform the theoretical analysis of our
proposal. Specifically, we first prove that the proposed loca-
tion perturbation mechanism meets the definition of Dis-
tPreserv. Then we discuss the utility performance of the
mechanism when selecting a reported location. Finally, we
prove that our proposal satisfies the property of incentive
compatibility.

6.1 Privacy Analysis

Compared to previous works, our proposal should allow
users to keep their whereabouts private while querying for
LBSs, and in that process, the distribution of users learned
by the LBS server should be similar to the real distribution
of users. To this end, we give a theorem which shows that
our proposal can satisfy our newly introduced privacy
definition.

Theorem 1. For any privacy parameter ", the proposed location
perturbation mechanism satisfies the definition of DistPreserv.

Proof. Since DistPreserv is formally defined with a limita-
tion of the mechanism’s input-output relationship, it is

necessary for the mechanism to satisfy Pr½KðxÞ ¼ z� �
e"�dðx;x

0Þ� fx�fx0j jPr½Kðx0Þ ¼ z�, note that the location pertur-

bation mechanism produces the reported pseudo-location

z with probability Pr½KðxÞ ¼ z� when the user’s true loca-
tion is x. Therefore we have

Pr½KðxÞ¼ z�
Pr½Kðx0Þ ¼ z� ¼

exp
�
"�uðx;zÞ

2

�
=
P

z02G exp
�
"�uðx;z0 Þ

2

�
exp
�
"�uðx0 ;zÞ

2

�
=
P

z02G exp
�
"�uðx0 ;z0Þ

2

�
¼ exp

�
"�dðx;zÞ� fx�fzj j

2

�
exp
�"�dðx0 ;zÞ� fx0 �fzj j

2

� �
P

z02G exp
�"�dðx0 ;z0Þ� fx0 �fz0j j

2

�
P

z02G exp
�"�dðx;z0Þ� fx�fz0j j

2

�
¼ exp

�
"�ðdðx0;zÞ�jfx0 �fzj�dðx;zÞ� fx�fzj jÞ

2

�
�P

z02G exp
��"�dðx0 ;z0Þ�jfx0 �fz0 j

2

�
P

z02G exp

�
�"�dðx;z0Þ� fx�fz0j j

2

�
� exp

�
"�dðx;x0Þ�jfx�fx0 j

2

�
� exp

�
"�dðx;x0Þ� fx�fx0j j

2

�
�P

z02G exp
�"�dðx0 ;z0Þ� fx0 �fz0j j

2

�
P

z02G exp

�
"�dðx0;z0Þ� fx0 �fz0j j

2

�
¼ expð" � dðx; x0Þ � fx � fx0j jÞ
The theorem is proved. tu

6.2 Utility Analysis for Perturbed locations

Although it is probabilistic to select a reported location in G
by the differential private exponential mechanism, users do
not have to worry too much about elements with very low
utility values being selected as reported locations for query-
ing. An element with a very low utility value means that it is
too far away from the true location of the user, which can
reduce the individual utility. Meanwhile, its difference in the
request rate from the true location is too large, which can
reduce the public utility. Specifically, as the utility of the loca-
tion x0 2 G is uðx;x0Þ ¼ �dðx; x0Þ � fx � fx0j j, we denote the
maximum utility value of locations in G as OPTuðGÞ ¼
maxx02Guðx;x0Þ, and denote the set ROPT ¼ fx0 2 G :
uðx;x0Þ ¼ OPTuðGÞg. Then we can have Pr½uðx;KðxÞÞ �
OPTuðGÞ � 2

" ðlnð Gj jÞ þ tÞ� � e�t [45]. This means that for any
specified value, a strict upper bound exists for the probability
that the actual perturbed location’s utility value is less than
this given value. For example, if we already know that xk is
the element with the smallest utility value in G, that is xk ¼
argminx02Gðuðx;x0ÞÞ, note that uðx;xkÞ � 0. Then, using the
above inequalities, we can directly obtain that the probability
of our proposed mechanism outputting xk as the reported

location does not exceed jGj � e"�uðx;xkÞ2 .

6.3 Distribution Divergence Analysis

In this section, we theoretically evaluate the public utility,
i.e., the quality of the users’ spatial distribution obtained
by the LBSs. Specifically, we examine the user distribution
divergence between the true distribution and the distribu-
tion after perturbations by comparing our method with
Geo-Ind under the metric of JS-Divergence. To this end,
we give a theorem to show the distribution divergence
features.

Theorem 2. For any privacy parameter ", the JS-Divergence
between the true distribution and the distribution after perturba-
tions by "�DistPreserv is no more than that perturbed by
"�Geo-Ind.
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Proof. When the user’s current location is x0, according to
Algorithm 1, the probability that the user perturbs x0 to
xk is

Prðz ¼ xkÞ ¼ e
"�uðx0 ;xkÞ

2P
xi2G e

"�uðx0 ;xiÞ
2

; (1)

where uðx0; xkÞ ¼ �dðx0; xkÞ � jfx0 � fxk j. Since
P

xi2G e
"�uðx0 ;xiÞ

2 is
invariantwhen the user atx0 needs to perturb his/her loca-
tion, we only focus on the numerator part of Eq. (1). Thus,

we havePrðz ¼ xkÞ / e
"�uðx0 ;xkÞ

2 , i.e.,

Prðz ¼ xkÞ / e
�"�dðx0 ;xkÞ� fx0�fxkj j

2 ; (2)

which can be rewritten as Prðz ¼ xkÞ /
�
e
�"�dðx0 ;xkÞ

2

� fx0�fxkj j
.

Note that with Prðz ¼ xkÞ / e
�"�dðx0 ;xkÞ

2 , the location pertur-

bation process is essentially based on the planar Laplace

mechanism of Geo-Ind, thus distPreserv can be regarded
as making the probability improvement of location per-

turbations by Geo-Ind. Since there are e
�"�dðx0 ;xkÞ

2 2 ½0; 1�
and jfx0 � fxk

j 2 ½0; 1�, we always have

�
e
�"�dðx0 ;xkÞ

2

� fx0�fxkj j
	 e

�"�dðx0 ;xkÞ
2 : (3)

This shows that with the decrease of jfx0
� fxk

j, (i.e., fx0
is

closer to fxk ), DistPreserv perturbs x0 to xk with a greater

probability than Geo-Ind. Recall that the request rate fxk
reflects the proportion of the number of users submitting
queries at xk to the total number of users. According to it,

since DistPreserv can perturb the true location to another

locationwith amore similar request rate by a greater prob-

ability, for a perturbed location xk, the request rates fxk
before and after the perturbation processed byDistPreserv

can be closed with a greater probability. Let f ðtrueÞxk
denote

the true request rate at xk, f
ðDistPreservÞ
xk

denote the request

rate at xk after perturbations by DistPreserv, f ðGeo�IndÞ
xk

denote the request rate at xk after perturbations by Geo-

Ind. According to the above discussion, we have jf ðtrueÞxk
�

f ðDistPreservÞ
xk

j < jf ðtrueÞxk
� f ðGeo�IndÞ

xk
j. This inequality means

that for xk, f
ðDistPreservÞ
xk

is closer to f ðtrueÞxk
than f ðGeo�IndÞ

xk
.

This inequality means that for xk, f
ðdistPreservÞ
xk

is closer
to fðtrueÞxk

than f ðGeo�IndÞ
xk

.

Thenwe denoteD
ðT Þ
G as the true location distribution of

users before perturbations, D
ðDÞ
G as the location distribu-

tion of users after the distPreserv perturbations, and D
ðLÞ
G

as the location distribution of users after the Geo-Ind per-
turbations. Thereby, there are f ðtrueÞxk

2 D
ðT Þ
G , f ðdistPreservÞxk

2
D
ðDÞ
G and f ðGeo�IndÞ

xk
2 D

ðLÞ
G . According to the formula of JS-

Divergence, we have

JS

�
D
ðT Þ
G jjDðDÞG

�
¼ 1

2
DKL

�
D
ðT Þ
G jjDðMÞG

�
þ 1

2
DKL

�
D
ðDÞ
G jjDðMÞG

�
;

(4)

where D
ðMÞ
G ¼ 1

2 ðDðT ÞG þD
ðDÞ
G Þ and DKLðDðT ÞG jjDðMÞG Þ ¼P

xk G fðtrueÞx log
f
ðtrueÞ
xk
average
x

, fðaverageÞxk
2 D

ðMÞ
G . Take the form of

KL-Divergence into JS-Divergence, we can obtain the for-
mula expansions for distPreserv and Geo-Ind, respec-

tively.

JSðDðT ÞG jjDðDÞG Þ ¼
1

2

X
xk2G

f ðtrueÞxk
log

2 � fðtrueÞxk

fðtrueÞxk
þ f ðaverageÞxk

!

þ 1

2

X
xk2G

f ðdistPreservÞxk
log

2 � f ðdistPreservÞxk

fðdistPreservÞxk
þ f ðaverageÞxk

!
(5)

JSðDðT ÞG jjDðLÞG Þ ¼
1

2

X
xk2G

fðtrueÞxk
log

2 � f ðtrueÞxk

f ðtrueÞxk
þ f ðaverageÞxk

!

þ 1

2

X
xk2G

f ðGeo�IndÞ
xk

log
2 � f ðGeo�IndÞ

xk

f ðGeo�IndÞ
xk

þ f ðaverageÞxk

!
(6)

The Eqs. (5) and (6) can be continuously written as
follows.

JSðDðT ÞG jjDðDÞG Þ¼
1

2

X
xk2G

f ðtrueÞxk
log

4 � f ðtrueÞxk

3 � fðtrueÞxk
þ f ðdistPreservÞxk

!

þ 1

2

X
xk2G

f ðdistPreservÞxk
log

 
4 � f ðdistPreservÞxk

3 � f ðdistPreservÞxk
þ f ðtrueÞxk

!
(7)

JSðDðT ÞG jjDðLÞG Þ ¼
1

2

X
xk2G

f ðtrueÞxk
log

4 � fðtrueÞxk

3 � fðtrueÞxk
þ fðGeo�IndÞ

xk

!

þ 1

2

X
xk2G

f ðGeo�IndÞ
xk

log
4 � fðGeo�IndÞ

xk

3 � fðGeo�IndÞ
xk

þ fðtrueÞxk

!
(8)

Since there is jf ðtrueÞxk
� f ðdistPreservÞxk

j < jf ðtrueÞxk
� f ðGeo�IndÞ

xk
j,

we have:

4 � f ðtrueÞxk
� ð3 � f ðtrueÞxk

þ fðdistPreservÞxk
Þ

��� ��� <
4 � f ðtrueÞxk

� ð3 � f ðtrueÞxk
þ fðGeo�IndÞ

xk
Þ

��� ��� (9)

and

4 � f ðdistPreservÞxk
� ð3 � fðdistPreservÞxk

þ f ðtrueÞxk
Þ

��� ��� <
4 � f ðGeo�IndÞ

xk
� ð3 � f ðGeo�IndÞ

xk
þ f ðtrueÞxk

Þ
��� ���: (10)

Based on it, there are

4 � f ðtrueÞxk

3 � f ðtrueÞxk
þ f ðdistPreservÞxk

� 1

�����
����� < 4 � f ðtrueÞxk

3 � f ðtrueÞxk
þ f ðGeo�IndÞ

xk

� 1

�����
�����
(11)

and

4 � fðdistPreservÞxk

3 � f ðdistPreservÞxk
þ f ðtrueÞxk

� 1

�����
����� < 4 � f ðGeo�IndÞ

xk

3 � f ðGeo�IndÞ
xk

þ fðtrueÞxk

� 1

�����
�����;
(12)

which indicates that the logarithmic expression in Eq. (7) is
closer to zero than that in Eq. (8). Based on the above for-
mulas, we can get that JSDðDðT ÞG jjDðDÞG Þ < JSDðDðT ÞG jjDðLÞG Þ.

3296 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 6, JUNE 2023

ed



Thus, the JS-Divergence perturbed by DistPreserv is less
than that perturbed byGeo-Ind. tu

6.4 Incentive Compatibility Analysis

An incentive-compatible mechanism requires that the indi-
vidual interests of the participants are consistent with the
collective interests. Thus, a mechanism that satisfies incen-
tive compatibility can attract participants to spontaneously
follow the defined rules and attract more participants to
join the system. In our scenario, users are considered ratio-
nal, while the LBS server is considered honest-but-curious,
implying that it is not a rational player. Thus, consistent
with the discussion in Section 3.2, we analyze the property
of incentive compatibility of users by taking the availability
of the overall user distributions as the public utility. To this
end, we denote UT , UG, and UD to indicate a user’s
obtained individual utility by directly reporting the true
location, applying Geo-Ind, or utilizing DistPreserv when
performing LBS queries, respectively. We chose Geo-Ind as
the baseline for comparison because it has a strict theoreti-
cal foundation and has been extensively studied, which
makes it a de facto standard for location privacy. Besides,
we use PT , PG, and PD as public utilities to indicate the
similarity between the users’ true location distribution and
the location distribution obtained from their reported loca-
tions for the above three cases, respectively. It is obvious
that PT > PD > PG. Then we give a theorem and prove
it.

Theorem 3. The DistPreserv mechanism we proposed satisfies
the property of incentive compatibility.

Proof. We consider the following two cases to prove the
property.

Case A: For users who are privacy-insensitive cur-
rently, they tend not to adopt any privacy protection
strategy in this case and want to submit their current
true locations to obtain LBSs. For such users, we have
UT > UG > UD. Since the users do not have motiva-
tions to pursue privacy in this case, the optimal strategy
for them is to submit their true locations directly for LBS
queries. Besides, since UT and PT are respectively the
best individual and public utilities, the strategy of sub-
mitting true locations directly is optimal for both individ-
ual and collective interests of users. Therefore, the user
has no incentive to harm the public utility to make it
lower than PT , because this action will also harm his/
her own individual utility UT .

Case B: For users who are privacy-sensitive currently,
it is obvious that the level of privacy is the most concern-
ing factor for users. For these users, combined with the
analysis in Section 4, we have UD > UG > UT , which
means that the optimal strategy for users at this time is to
use DistPreserv for LBS queries. On the one hand, since
PD > PG, if the user wants to reduce the public utility
by using the strategy of Geo-Ind query, it will also harm
the individual utility of himself/herself due to UD >
UG. Therefore, a rational user who cares about his/her
privacy will use DistPreserv instead of Geo-Ind while
issuing the LBS query. On the other hand, although the
strategy of querying with true location will improve the

public utility due to PT > PD, a rational user will not
adopt this strategy to leak privacy due to UT < UD.

Thus, no matter whether users are privacy-sensitive or
not, they cannot harm the public utility in the process of
pursuing their own individual utilities. This property
shows that our proposed mechanism satisfies the incen-
tive compatibility. tu

7 EXPERIMENTAL EVALUATION

In this section, we focus on the performance of our proposal
through extensive experiments. We divide G into a grid of
50
 50 in simulation experiments and divide the areawithin
Fifth Ring of Beijing City into a grid of 100
 100 on a real-
world dataset. We demonstrate the performance of our pro-
posed scheme by comparing with that of the planar Laplace
mechanism in Geo-Ind, since it is the original and most typi-
cal way to achieve Geo-Ind in existing practical applications.
Besides, we perform experiments on a PC with Intel Core i7-
6700 3.4GHz CPU, 8GB RAM, and Windows 7-64bit OS. All
the experiments are programmed using Python, and the rele-
vant code can be found onGitHub.1

7.1 Availability Comparison of User Distribution:
Simulations Experiment

In this section, we discuss the availability of statistical distri-
bution of users after they perturb locations. Specifically, we
first divide G into a grid of 50
 50, and then evaluate the
distance between users’ perturbed distributions and their
true distributions. To this end, we still use JS-divergence to
evaluate the difference of user distributions before and after
their perturbations, and employ the base e logarithm to cal-
culate KL-divergence in the computation.

Intuitively, we first show the comparison between users’
true distributions, perturbed distributions based on planar
Laplacian and our proposed mechanism, respectively. In
this experiment, we control the number of users on each
grid to follow a uniform distribution on [0, 50]. The experi-
mental results are demonstrated in Fig. 5.

As shown in Fig. 5, after the perturbation using planar
Laplacian, the distribution of reported locations is intuitively
different from the users’ true distribution significantly. How-
ever, adopting our proposed mechanism, the distributions
are visually closer generally. In fact, if we denote the true dis-
tribution of users in G as D

ðT Þ
G , the distribution of users after

planar Laplace perturbation as D
ðLÞ
G , and the distribution of

users after DistPreserv perturbation asD
ðDÞ
G , then we can get

JSðDðT ÞG jjDðLÞG Þ ¼ 0:064 and JSðDðT ÞG jjDðDÞG Þ ¼ 0:005 when all

users share " ¼ 0:5, which indicate that our proposedmecha-
nism improves user distribution availability by 92.2%.When
each user randomly chooses his/her privacy parameters

ranging from 0.1 to 1, we have JSðDðT ÞG jjDðLÞG Þ ¼ 0:061 and

JSðDðT ÞG jjDðDÞG Þ ¼ 0:005, which implies that the user distribu-
tion availability of our proposal is 91.8% higher than the
baseline.

Then we evaluate JS-divergence between the distribution
of user-reported locations and the users’ true location distri-
bution as " and the number of users at each location cell

1. github.com/MeetSiddhartha/spatialPatternLocationPert
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gradually changes, respectively. Specifically, in Fig. 6a, we set
the users to share the same " andmake the number of partici-
pant users at each location follow a uniform distribution on
[0, 50]; In Fig. 6b, we make all users share the same " ¼ 0:5,
andmake the number of users at each location follow the nor-
mal distribution of (m, 10); In Fig. 6c, we allow each user to
randomly choose " within [0.1, 1], and still make the number
of querying users at each location follow the normal distribu-
tion of (m, 10); In Figs. 6a, 6b and 6c, we assume that all query-
ing users in the current time slot adopt location perturbation
to keep their whereabouts private. In Fig. 6d, we make the
number of querying users in each location follow the uniform
distribution on [0, 50], and make all users share the same " ¼

0:5. Then we make the proportion of the users who adopt the
strategy of location privacy protection gradually increase,
which also means that we examine the situation where some
users choose to submit their true locations without privacy
protection. Besides, we perform each of these evaluations 100
times and calculate the means and error bars of the observed
results, in which the error bars are measured by�2
 SE (i.e.,
95% CI), where SE and CI represent the standard error and
the confidence interval of observations, respectively [47]. The
results are shown in Fig. 6.

Figs. 6a, 6b and 6c show that the user-selected privacy
parameter " has little effect on the JS-divergence between user
location distributions before and after the perturbation. How-
ever, as " increases, there is a slight downward trend in JS-
divergence, which is also in line with the intuition that the
smaller " indicates the more randomness of the location per-
turbation. Besides, Figs. 6b and 6c show that when the num-
ber of users at each location gradually increases, the JS-
divergence obtained by the planar Laplace mechanism is
always larger than that of our proposal, especially when the
number of users is small. Fig. 6d shows that as the proportion
of users who adopt the strategy of location privacy protection
increases, the planar Laplacian gradually loses the availability
of the user distribution after perturbations, yet our mecha-
nism effectively maintains the user distribution after pertur-
bations asmuch as possible,making it as similar as before.

7.2 Availability Comparison of User Distribution:
Real-World Experiment

After examining the availability of user distribution through
simulations, we evaluate this issue on a real-world dataset
namedGeolife, which is collected in Beijing City byMicrosoft
Research. In the experiments, we divide the area within Fifth
Ring of Beijing into a grid of 100
 100, and randomly sample
30% of the locations in the dataset as the true locations of
users. Since in this experiment the number of users at each
location is uncontrolled, we evaluate the JS-divergence by
varying the privacy parameter " and the proportion of partic-
ipating users. In each evaluation, the experiment is per-
formed 100 times to calculate the means and error bars, in
which the error bars are also computed by�2
 SE (i.e., 95%
CI). The results are shown in Figs. 7a and 7b.

In Fig. 7a, we make all users share the same privacy
parameter ", and in Fig. 7b, each user randomly chooses a
privacy parameter within the range [0.1, 1]. The results
demonstrate that DistPreserv prominently improves the

Fig. 5. Comparison of user distribution before and after perturbations. In
this figure, heat maps are presented to give an intuitive effect of our
scheme, where the shade of colors expresses the density of users. In
Fig. (a), we make all users share the same privacy parameter " ¼ 0:5. In
Fig. (b), we make each user choose a privacy parameter respectively
and randomly on [0.1, 1]. Intuitively, Figs. (a)(b) show that the location
distribution after perturbations through our proposal is closer to the true
distribution than that after the planar Laplacian perturbations.

Fig. 6. JS-divergence evaluation. We evaluate JS-divergence between
the distribution before and after perturbations. From the results we learn
that our proposal improves the availability of user distribution after per-
turbations effectively compared to the baseline.

Fig. 7. JS-divergence evaluation on a real-world dataset. Fig. (a) (b) both
illustrate that DistPreserv provides the better availability of the distribu-
tion after perturbations than planar laplacian. Besides, we can learn
from Fig. (b) that if we want to obtain the better distribution availability,
we need more users to participate, whether for DistPreserv or Geo-Ind.
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availability of the user distribution after perturbations,
which further confirm the advantage of our proposal.

7.3 Precision and Recall Comparison of LBS Query

We examine the accuracy of queried POIs by introducing two
metrics that are widely used to evaluate retrieval information,
namely precision and recall. In the scenario of LBSs, the preci-
sion refers to the proportion of actually interested POIs
received by the user to the total POIs within AOR, and the
recall refers to the proportion of received interested POIs to
the total POIs within AOI. Formally describing, if we make
True represent POIs in AOI, make Positive represent POIs in
AOR, and denote TP as POIs in AOI \ AOR, then the preci-
sion of the query equals to TP

Positive and the recall of the query
equals to TP according to these notations.

In this experiment, we still choose the Fifth Ring Road of
Beijing City as the macro area G and project the grid with
100
 100 cells in this area. Besides, we control the number of
users on each grid to follow a uniform distribution on [0, 50],
and then select 100 locations uniformly in this area as the
user’s true locations. According to these settings, we gener-
ate the reported location z at each location and determine the
radius of retrieval area rAOR based on our proposed method
and the baseline method, respectively. Afterwards, AMAP
“neighboring search” API is invoked to query POIs around
the true and reported locations, respectively. For example, if
we want to get POI information about all hotels up to 500
meters from the location (120.101193, 30.238169), we can
query by theHTTPS request below:

restapi:amap:com=v3=place=around?key ¼ ourToken&
location ¼ 120:101193; 30:238169&radius ¼ 500&
keywords ¼ hotels.
Besides the precision and the recall, we also combine

these two factors to compute their F b score [48]. Specifically,
the formula of the F b score is defined as

F b ¼ ð1þ b2Þ � precision � recall
ðb2 � precisionÞ þ recall

;

where b is the scoring parameter to regulate the emphasis
for the recall and a bigger b means the higher importance
on the recall in evaluations [49]. Other control factors in the
evaluations are instantiated as case 1 (" ¼ 0:1, RAOI ¼ 500,
c ¼ 0:7) and case 2 (" ¼ 0:5, RAOI ¼ 800, c ¼ 0:5), respec-
tively. Each evaluation is tested 100 times to get the means
and error bars, where the error bars are also measured by
�2
 SE (i.e., 95% CI). Overall, the evaluating results for
these indicators are presented in Fig. 8.

From Fig. 8 we learn that precision and recall constitute a
trade-off to some extent. In general, our proposal outper-
forms the baseline in terms of recall and underperforms it
in terms of precision. The reason for this phenomenon is
that, since our proposal can provide a higher level of pri-
vacy as detailed in Section 4, it requires a larger retrieval
radius to satisfy the accuracy level specified by users. As a
larger retrieval radius means that users can receive more
POIs, users can get more complete results, which is reflected
by a higher recall. Meanwhile, since more received POIs
inevitably include some results that are not in the user’s
AOI, the evaluated precision would be decreased. Besides,
it is worth noting that in LBSs, the recall is the major demon-
stration of the quality of services since it indicates the com-
pleteness of queried results, and the basic goal of LBSs is to
provide complete results. In contrast, since the precision
reflects the proportion of desired POIs in all received POIs,
higher precision reflects the refinement and lower precision
reflects the redundancy of the queried results, which means
that the precision only embodies the bandwidth overhead
in LBSs. Since the bandwidth overhead can be efficiently
resolved in current 5G/WiFi and future 6G networks, the
recall (which reflects the completeness of returned queries)
is a more important indicator compared with the precision.

Besides, through the comprehensive metrics of F b, we
can get that with the increase of the scoring parameter b, the
value of F b can increase for both comparative methods.
Moreover, the evaluation shows that as b grows, our pro-
posal can surpass the baseline at a certain scoring parameter

Fig. 8. Evaluation on the precision and recall. From figures (a)�(f) we get
that our proposal outperforms planar laplacian in terms of recall and
underperforms it in terms of Precision, which indicates that DistPreserv
can get more complete queried results, while bearing the cost of greater
bandwidth overheads. Besides, figures (g)�(h) shows that with the
increased emphasis on recall, the comprehensive score of both methods
increase and our proposal can surpass the baseline at a certain b.

REN ETAL.: DISTPRESERV: MAINTAINING USER DISTRIBUTION FOR PRIVACY-PRESERVING LOCATION-BASED SERVICES 3299



b, which means that as the increased emphasis on the recall,
the superiority of our proposal will be highlighted in terms
of the POI querying performance. Based on the above dis-
cussions, we can get that our proposal is effective and prac-
tical since it can provide more complete queried results
with affordable bandwidth overheads.

In the next subsection, we will examine the indicator of
bandwidth overhead, which also reflects that the maximum
bandwidth overhead in the experiment is limited.

7.4 Computation Delay and Bandwidth Overhead

In this subsection, we continue to examine the computation
delay and bandwidth overhead of our proposed scheme.
Specifically, we first evaluate the computation delay with
different privacy parameters and user number expectations,
where in Fig. 9a, we make the querying users in each loca-
tion follow the uniform distribution on [0, 100]; in Fig. 9b,
we make " ¼ 0:5 and the number of users in each location
follows the uniform distribution with varying expectations.
The baseline approach in this experiment is to employ pla-
nar Laplacian repeatedly until the number of users at the
perturbed location differs from that at the true location by
no more than 10. We perform each of these two tested meth-
ods to generate reported locations 100 times and calculate
the means and error bars of computation delays. The error
bars are also measured by �2
 SE (i.e., 95% CI). The
results are shown in Fig. 9.

Fig. 9 reflects that when the number of querying users
follows the uniform distribution on [0, 100] at each location,
our mechanism has a lower computation delay than the
baseline approach. Besides, with the increase of user num-
ber expectation, the computation delay of our mechanism is
almost unchanged, while that of the baseline approach
gradually increases. Note that the maximum computation
delay of our approach is about 0.5ms, which is acceptable to
users.

Since our proposal can provide a high level of privacy,
preserve the user distribution after perturbations and obtain
decent accuracy of queries, it requires a larger retrieval
radius in the query, which is embodied in bandwidth over-
heads. Therefore, it is necessary to examine the bandwidth
overhead incurred by our proposal. Specifically, we use the
same setting as that in Section 7.3 for G and DG. Then we
make the user set the privacy parameter ", accuracy require-
ment c and the radius of interested area rAOI , and call corre-
sponding algorithms to generate the pseudo-location z and

the radius of the retrieval area. After that, we submit z and
rAOR to AMAP searching API in the same way as that in Sec-
tion 7.3 to get POI information, by which we can count the
bandwidth overhead. We randomly choose 100 users as the
querying user and compute the mean value of counted
bandwidth overheads. The results are shown in Fig. 10.

From Fig. 10 we get that the privacy parameter " has no
prominent relationship with the bandwidth overhead. How-
ever, with the increase of rAOI , the bandwidth overhead also
rises gradually. Besides, the growing accuracy requirement c
gives the bandwidth overhead a slight upward trend to
some degree. We also learn from the figures that the maxi-
mum bandwidth overhead in the experiment is about 350
KB. Since this overhead is approximately equivalent to 0.6
seconds of 720P YouTube video, we believe this overhead is
acceptable tomobile users.

8 CONCLUSION AND FUTURE WORK

Since Geo-Ind location privacy protection methods under-
mine the true distribution of querying users after location
perturbations, we give a new privacy definition namely Dis-
tPreserv, so that the user distribution can be largely retained
on the LBS server after location perturbations, thereby pro-
viding benefits to both the LBS server and users in LBSs. We
first design a detailed mechanism to produce perturbed
locations to satisfy the privacy definition, then provide a
retrieval radius determination method to enable users to
obtain preferred query accuracy while protecting their loca-
tion privacy, finally discuss the issues about interactions
between the LBS server and a user during the implementa-
tion process. Theoretical analyses prove that our proposal
can achieve the expected level of privacy and the property
of incentive compatibility. Experimental results verify that
our proposal can better retain the true distribution of query-
ing users and achieve feasibility.

In the future, we aim at extending our discussion to the
continuous queries of the user, with taking the mobility

Fig. 9. Evaluation on the computation delay. With the increasing number
expectation of users, the computation delay of our mechanism is basi-
cally invariant while the baseline approach leads to a growing computa-
tion cost. Besides, the maximum delay of our approach is about 0.5ms,
which is a quite small cost.

Fig. 10. Evaluation on the bandwidth overhead. The bandwidth overhead
does not appear to be prominently affected by ", while it has a slight
upward trend with a larger c, and rises with a larger rAOI .
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patterns of users and the privacy budget consumption of
DistPreserv into consideration. Besides, it will be interest-
ing to explore whether it is possible for users to retain the
availability of the distribution while reporting perturbed
locations through only one round of interaction with the
server.
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