IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

2699

Enabling Efficient Random Access to Hierarchically
Compressed Text Data on Diverse GPU Platforms

Yihua Hu"”?, Feng Zhang ", Yifei Xia

Xiao Zhang ", Jidong Zhai

Abstract—The tremendous computing capacity of GPU offers
significant potential in processing hierarchically compressed text
data without decompression. However, current GPU techniques
offer only traversal-based text data analytics; random access is
exceedingly inefficient, limiting their utility significantly. To ad-
dress this issue, we develop a novel and widely applicable solution
that prompts random access to hierarchically compressed text data
without decompression in GPU memory. We address three main
challenges for enabling efficient random access to compressed text
data on GPUs. The first challenge is designing GPU data structures
that facilitate random access. The second challenge is efficiently
generating data structures on GPU. The CPU is inefficient when
generating data structures for random access, and this inefficiency
increases considerably when PCle transmission is incorporated.
The third challenge is query processing on compressed text data in
GPU memory. Random accesses, such as data updates, cause mas-
sive conflicts among countless threads. In order to address the first
challenge, we develop several compressed GPU data structures,
including indexing within the intricate GPU memory hierarchy. To
handle the second challenge, we propose a two-phase process for
producing these data structures on GPU. For the third challenge, a
double-parsing design is proposed as a solution to avoid conflicts.
We evaluate our solution on three platforms, two server-grade GPU
platforms and one edge-grade GPU platform, using five real-world
datasets. Experimental results show that random access operations
on GPU achieve an average speedup of 52.98 X compared to the
state-of-the-art solution.

Index Terms—Big data applications, data compression, parallel
architectures, query processing, text analysis.

Manuscript received 30 November 2022; revised 8 May 2023; accepted
27 June 2023. Date of publication 11 July 2023; date of current version 11
August 2023. This work was supported in part by the National Natural Science
Foundation of China under Grants 62172419 and 62322213, in part by Beijing
Nova Program, and Public Computing Cloud, Renmin University of China.
This work was also supported by funds for building world-class universities
(disciplines) at Renmin University of China. Recommended for acceptance by
M. Si. (Corresponding author: Feng Zhang.)

Yihua Hu, Feng Zhang, Yifei Xia, Zhiming Yao, Letian Zeng, Haipeng
Ding, Zhewei Wei, Xiao Zhang, and Xiaoyong Du are with the Key
Laboratory of Data Engineering and Knowledge Engineering (MOE), and
School of Information, Renmin University of China, Beijing 100872, China
(e-mail: chronomia@ruc.edu.cn; fengzhang@ruc.edu.cn; xiayifei0101@ruc.
edu.cn; 2020201366 @ruc.edu.cn; 2019201413 @ruc.edu.cn; dinghaipeng@
ruc.edu.cn; zhewei @ruc.edu.cn; zhangxiao@ruc.edu.cn; duyong@ruc.edu.cn).

Jidong Zhai is with the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing 100084, China (e-mail: zhaijidong@
tsinghua.edu.cn).

Sigi Ma is with the School of Engineering and Information Technology,
University of New South Wales, ADFA, Sydney, NSW 1466, Australia (e-mail:
sigi.ma@unsw.edu.au).

Digital Object Identifier 10.1109/TPDS.2023.3294341

, Zhiming Yao

, Letian Zeng *“, Haipeng Ding ", Zhewei Wei ",

, Xiaoyong Du, and Siqi Ma

1. INTRODUCTION

EING one of the most powerful parallel accelerators [1],

[21, [3], [4], [5], [6], GPUs have been effectively deployed
to text analytics directly on compression (TADOC) [7], [8],
[9]. By utilizing data redundancy, the GPU-based TADOC (G-
TADOC) can achieve both time and space savings. Experiments
indicate that G-TADOC, which combines TADOC and the ex-
traordinary computing capacity of GPU, is capable of handling
cluster-level text data processing [8]. However, G-TADOC sup-
ports only traversal-based operations that require traversing the
whole compressed text data. Random access, another funda-
mental set of operations, is not well supported by G-TADOC
as it involves only partial data and does not necessitate a full
dataset scan. Moreover, with the prevalence of embedded GPU
platforms, edge GPU has been deployed in diverse situations,
such as object detection [10], [11], [12], [13], emotion recogni-
tion [14], [15], autonomous driving [16], genomic analysis [17],
and traffic control [18], [19]. Besides, with the continuously
surging demand for flexibility and scalability in data processing,
edge devices are also playing an increasingly important role in
the data processing field [20], [21], [22]. Therefore, it is critical
and necessary to enable random access to enhance text data
processing for diverse GPU platforms.

Enabling random access to compressed text data on GPU
can yield considerable benefits. First, many query operations
are based on random access. Consequently, enhancing random
access on GPU enables the efficient execution of a variety
of queries on compressed text data employing the high GPU
compute capacity. Second, GPU offers massive parallelism. The
involvement of GPU provides abundant possibilities in the time
reduction for batches of random access operations. Third, text
analytics consists of two fundamental data processing opera-
tions: traversal-based operations and random access operations.
G-TADOC has already supported traversal-based operations, so
optimizing random access on GPU can complete the functional-
ity of G-TADOC. Moreover, since the GPU memory is limited,
this technology can greatly alleviate the limitation induced by
the lack of storage space on the GPU.

Many studies have explored the data processing of com-
pressed data in diverse environments. Hierarchical compression
refers to the compression using rules to represent repeated text
data to reduce the amount of data [23]. The text data after using
hierarchical compression are called hierarchically-compressed
data. Sequitur [24], [25], [26], [27] is a representative of
the hierarchical compression method and TADOC [28], [29]

https://orcid.org/0009-0001-2948-8340
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0009-0006-0316-8986
https://orcid.org/0009-0006-7892-0570
https://orcid.org/0009-0009-8089-5396
https://orcid.org/0009-0006-4856-3023
https://orcid.org/0000-0003-3620-5086
https://orcid.org/0009-0001-1857-1368
https://orcid.org/0000-0002-7656-6428
https://orcid.org/0000-0003-3479-5713
mailto:chronomia@ruc.edu.cn
mailto:fengzhang@ruc.edu.cn
mailto:xiayifei0101@ruc.edu.cn
mailto:xiayifei0101@ruc.edu.cn
mailto:2020201366@ruc.edu.cn
mailto:2019201413@ruc.edu.cn
mailto:dinghaipeng@ruc.edu.cn
mailto:dinghaipeng@ruc.edu.cn
mailto:zhewei@ruc.edu.cn
mailto:zhangxiao@ruc.edu.cn
mailto:duyong@ruc.edu.cn
mailto:zhaijidong@tsinghua.edu.cn
mailto:zhaijidong@tsinghua.edu.cn
mailto:siqi.ma@unsw.edu.au

2700

extends it to traversal-based analytics on compressed text data.
Zhang et al. [30] also studied random access to compressed
text data on CPU. Zhang et al. [8] then extended TADOC in a
heterogeneous environment, and exhibited significant potential
in applying GPUs in text analytics. Because the technology
of compressed data direct processing can greatly expand the
amount of text data that the GPU can manage, Zhang et al. [9]
applied TADOC to the embedded GPU environment. The
compression-based data processing shows unprecedented op-
portunities in resource-constrained environments. However, to
the best of our knowledge, no work explores the possibility of
supporting efficient random access to hierarchically-compressed
text data on GPU, not to mention the edge-grade GPU platforms.

Although facilitating random access without decompression
on GPU can bring significant benefits, enabling these tactics
confronts the following challenges. 1) In data structure gen-
eration, traditional methods [8], [9] generate the GPU data
structures from the CPU side, and then copy these structures
from CPU to GPU via PCle, which is time-consuming. A more
efficient solution is to generate the data structures directly on
GPU. However, according to the studies [8], [9], distributing
tasks of data structure construction to threads on GPU requires
both element counting and offset recording. It is difficult for
GPUs to allocate space to store these data for each vertex during
graph traversal dynamically. 2) In query processing, random
access operations on compressed data can result in severe data
conflicts in parallelism. For instance, given the issue of data
dependency, insert operations should be conducted exactly in
the addressed sequence within the same file, since any changes
made to the operation order can lead to misconceptions about the
insert location. Moreover, the edge-grade GPU platform usually
employs a CPU-GPU integrated architecture, which requires
targeted optimizations.

To solve these critical challenges, we propose a series of novel
solutions. 1) In data structure generation, we develop a novel
GPU-based generation process at the rule-level during DAG
traversal. To meet diverse requirements for random access, we
develop a hybrid strategy of light-weight breadth-first traversal
and sequence-guaranteed traversal to generate all required data
structures. Then, we parallelize the traversal tasks by rules to
maximize GPU parallel resource utilization. 2) In query process-
ing, we develop anovel double-parsing strategy to minimize data
dependencies among different operations on GPU. We develop
a fusion of two functions for random access operations with data
conflicts. The first function comprehends the parameter offset as
relevant to previous changes within the same query batch, allow-
ing it to handle nested insertions in the same location. The second
function comprehends the offset based on the original text data
status before changes, supporting query-level parallelism. The
combination of the two functions covers practical applications
in all cases while assuring good performance. It should be noted
that our method is only for text data. Our initial work has been
presented in the study [31], which provides only preliminary
results without the diversity of GPU platforms. Compared to
the previous study [31], we provide adaptation to different GPU
platforms and add new insights from various perspectives.

We evaluate our solution on three platforms, two server-grade
GPU platforms and one edge-grade GPU platform, using five

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

real-world datasets with diverse characteristics. Compared to
the state-of-the-art random access method [30], our solution can
provide an average of 52.98 x in random access operations and
56.35% time saving in data structure generation. In the detail
of five random access operations, we attain the acceleration of
24.59x in count, 16.26 X in search, 44.69 x in extract, 53.52 %
in append, and 124.86x in insert, respectively. Moreover, our
solution achieves a compression ratio of 2.92 on average.

We mainly provide the following contributions.

e We unveil the challenges and difficulties of enabling ef-
ficient random access to hierarchically-compressed text
data on GPUs, and show our insights into common random
access operations.

® We provide a novel design of GPU-based data structure
generation, and deliver the first solution that can efficiently
support random access to compressed text data on GPU.

e We adapt our solution to different GPU platforms and
demonstrate the benefits from both power and cost per-
spectives.

® We evaluate our solution on both server- and edge-grade
GPU platforms with five datasets, and prove the perfor-
mance superiority over the state-of-the-art solution.

II. BACKGROUND
A. Random Access in TADOC

TADOC [7], [28], [29], [30], [32], [33] is a novel hierarchi-
cally compression design that performs text analytics directly
on compressed data. Different from traditional compression
schemes, it does not pursue an extremely high compression ratio,
but rather a compromise with performance. TADOC represents
the text data in the form of context-free grammar (CFG) by
describing words as different terminators and summarizing the
repeated content fragments of the text as rules. By using the
same rule to represent repeated strings, TADOC can achieve
significant space savings. TADOC is a lossless compression
method and we can restore the original uncompressed text data
by parsing the hierarchical rules. To support cases with multiple
files, TADOC joins unique file splitters into boundaries between
files to indicate file separation. Moreover, the rule-based repre-
sentation of TADOC can be regarded as a DAG, so common
operations on TADOC-compressed data can be mapped to a
DAG traversal problem.

Rule-Based Representation: Fig. 1 illustrates the working
principle of TADOC on an example of two files. Fig. 1(a)
shows the original text data, including two consecutive files
with abstract words marked as wi. The CFG transformation
of the input data is shown in Fig. 1(b). The root rule R0 implies
the overall content of the input data. By recursively replacing
the rules with its production on the right, we can restore the
full scope of the primary text. Such representation delivers a
succinct description of the raw data by concluding the repetitive
strings such as “wlw?2” in both files into one rule. The CFG
representation can be viewed in its equivalent form of DAG
organization, as displayed in Fig. 1(c). Edges in DAG indicate
the hierarchical reference relation from parents to children.

Random Access Data Structures: We show the major data
structures used in random access [30] in Fig. 1(d). We assume

HU et al.: ENABLING EFFICIENT RANDOM ACCESS TO HIERARCHICALLY COMPRESSED TEXT DATA ON DIVERSE GPU PLATFORMS

Input:

file0: w1l w3 w4 w3 wl w2
wlw3wsdw3wlw2

filel: w3 w4 wl w2

(a) Original data

Rules:

RO -> R1 R1SPT1R3 R2
R1-> w1l R3w3 R2

R2 5> wl w2 =
R3 > w3 wa '~ -7 in each node

(b) TADOC compressed data

71 Data structure existing |~ ~ 7 Data structure

I— —1 appearing once in DAG
(c) DAG representation

Fig. 1. TADOOC illustration.

that the length of each word is 2. For word2rule, the entry for each
word contains the pairs of rules and frequencies that the word
occurs in the related rules. For rule2location, as to each rule, the
locations in the original uncompressed files are represented as
(total,length, (filer, numy, startyy, startia, -, ..., {(file;,
num;, start;;, start;e, - -), where total is the total number
of locations, length is the length of the rule, file; is the ith
file the rule appears, num, is the number of the rule in file;,
and start;; is the jth start location of the rule in file;. For
rootOffset, it stores the offsets for different elements in the root.

Random Access Example: We use search(filel,wl) as an
example to show the workflow of random access operations in
Fig. 1(c). Assume that the length of a word is 2. In this example,
the operation searches for all occurrences of w1 in filel and
returns the corresponding offsets. In detail, first, we fetch all
appeared rules of w1 in the data structure word2rule, which are
R1 and R2. Second, we obtain all the appearing locations in
all files for each rule from the data structure rule2location, and
then filter out the specific records of the target file, which is
filel. We obtain the rule location (R2, 4) in this step. Third, we
search through 22 and record all w1 offsets within the rules. By
merging the word offset (w1, 0) with the rule location (R2,4),
our search function returns the result offset 4.

B. GPU

GPUs are common heterogeneous accelerators in HPC do-
main [1], [2], [3], [4], [5], [6], [34], [35] and its application scope
is gradually expanding from scientific data analytics to data
science domain [36], [37], [38], [39], [40], [41], [42], including
text analytics. These data science problems can be turned into
HPC problems to solve. In detail, GPU assists different kinds
of assignments in improving their processing throughput in
parallel, and has already been demonstrated to be successful
in accelerating traversal-based text analytics in TADOC [7], [8],
[9]. Random access queries, such as counting for a specific word,
can have low data dependency in the same batch, making them
more compatible with GPU working styles. Moreover, since the
GPU memory is limited, the compressed data direct processing
technology can greatly alleviate the limitation caused by the
fixed discrete GPU memory. Therefore, we consider it a promis-
ing solution during the conceptualization phase of our work.

Diversified GPU Platforms: With the development of parallel
systems, GPUs are also integrated into embedded edge devices.
Accordingly, we now have server-grade GPU platforms and

2701

........... v G]| |[wkEI]
1 word2rule]
""""" wrRl][l 1]]| |[wEli]]
|R1|2|12|f0|2|0|12| |
|--_----_._--I 1
Iuleziceationy |R2| 3] 4 [fo] 2 [820 a1 [a]
1
[GTalol 2 Tslmlalils
i~ rootOffset | o| 12 |SPT1 |24| 28 |

(d) Actual data structures

edge-grade GPU platforms. The server-grade GPU platform
usually adopts a discrete architecture, which is connected to
CPU via PCle. In contrast, the edge-grade GPU platform adopts
an integrated architecture, which integrates both CPU and GPU
on the same chip, sharing the same memory. More optimization
details are discussed in Section V.

GPU Utilization: To optimize applications on the GPU, we
need to consider the unique GPU architecture design. GPU in-
volves drastically more arithmetic logic units (ALUs) for parallel
data computation and consequently less space for cache systems,
which is different from CPU. The large number of streaming
multi-processors (SM) consisting of massive lightweight cores
provides GPU with the ability to work on multiple pieces of
data simultaneously. However, dependencies and data conflicts
exist among tremendous threads. Besides, fully utilizing various
kinds of APIs contributes to promoting the performance of GPU
applications [43], [44]. All these factors need to be considered
in enabling random access to hierarchically-compressed data on
GPUs.

III. MOTIVATION
A. Revisiting Random Access in Compressed Data

With the development of Big Data technology, the amount
of data to be processed becomes very large [45], [46], [47],
and the demand for high-throughput text random access has
gradually emerged [48]. Efficient random access can help to
uncover valuable information in text data with high information
density, which includes but is not limited to news [49], legal
affairs [50], [51], webpages [52], [53], medical records [54],
[55], and logs [56].

Under this circumstance, our work enabling random access
to compressed text data well supports the construction of online
text analytical processing with five random access operation
interfaces. Besides, with the assistance of GPU, we can use only
one heterogeneous server to meet the needs of a large number
of users, which greatly reduces the burden of the platform.

We revisit previous random access in TADOC [30], which
involves the following five common operations to support var-
ious random accesses to compressed data. As for deletion, it is
not common in the domains we examine since this technology
targets datasets with long-term value [30], [32].

o extract(f,pos,len): The operation extract returns the string

in file f at location pos with length len.

2702

e search(f,w): The operation search returns the offsets of
word w from file f.

e count(f,w): The operation count returns the number of
frequencies of word w in file f.

o jnsert(f,pos,str): The operation insert puts string str at
location pos in file f.

o append(f,str): The operation append adds string str at the
end of file f.

These common random access operations are essential for
text analytics on GPUs. Given that G-TADOC generates 31.1x
performance speedup compared to TADOC [7], [8], [9], we be-
lieve that enabling efficient random access on GPU also provides
significant performance benefits. However, before we show the
challenges of developing these operations on GPU, we need to
first clarify why previous GPU-based traversal is inapplicable.

Why Previous GPU-Based Traversal Does not Work? The
specialties in random access require complicated data manipula-
tions between rules, which have not been considered by previous
works [8], [9]. In detail, first, each node in the DAG represents a
rule, which includes additional data structures such as subrules
and words. Previous GPU-based traversals do not involve these
contents. Second, the majority of previous works [57], [58], [59],
[60], [61] rely on BFS, which is simple for parallelization. To
obtain the offsets of each element in the DAG on the GPU, the
data structure generation process needs to perform sequential
guaranteed DAG traversal, which is different from BFS. Third,
random access necessitates fast locating the data that need to
be accessed, which requires indexing. There is no previous
literature on building GPU indexes based on grammatical rule
compression.

B. Challenges

Developing efficient random access to hierarchically-
compressed data on GPU needs to handle the following chal-
lenges.

Random Access Data Structure Generation: Distributing the
DAG traversal process to parallel GPU threads for data structure
generation has three challenges.

® Most data structures of random access operations in TA-
DOC are constructed dynamically on the fly, which cannot
be calculated in advance, meaning that the size of the used
space is unknown until the building process is complete.
Different from the CPU, the GPU cannot handle dynamic
memory allocation efficiently, especially among multiple
parallel threads.

e The generation process of data structures requires the
traversal of the entire DAG, but different structures have
distinct construction requirements. For example, the data
structure ruleFreq needs to calculate the frequency of
rules that appear in different files, while rule2location is
designated to record the offset of each rule’s appearance.
The differences in objectives lead to the diversion of the
traversal method choices.

® The sequence-guaranteed depth-first traversal is essential
for the validity of offset calculation. However, the depth-
first traversal is hard to parallel due to the dependencies
among vertices, and can cause unbalanced thread load.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

Data Structure Generation

Light-weight breadth-
first traversal

Sequence-guaranteed
traversal

Query
Result
Random Access Operations

m)| cru

Data Structure Architecture

‘ rootOffset ‘ ‘ruleZlocaticn

GPU — i ‘ bitmap

‘ word2rule

[ruleziile ——+ Data Flow

¥

‘ records

------ » Control

— —»Generate

Fig. 2. Solution overview.

Data Conflicts in Random Access Operations: Executing ran-
dom access operations in parallel among massive GPU threads
undoubtedly leads to performance acceleration. However, op-
erations that specify the modification location by file indexes
and offsets can cause severe data conflicts. We consider two
exemplary insert queries, insert; and inserts. The operation
insert; puts the string “a” at offset 6 in filel, and inserts
puts the string “b” at the beginning of filel. The queries come
as “inserti,inserts”, meaning that insert; is expected to
perform first with the insertion of “a” at offset 6. However, the
reversal in order can cause the string “a” inserted one byte before
the expected position. Therefore, if two threads are allocated
to execute the two insertions, the result can be different for the
conflicts of accessing the offset and uncertainty of the processing
sequence. Applying locks in the parallel environment can solve
the problem of data conflicts, but at the cost of significant
performance degradation.

Moreover, for the diverse GPU platforms, additional opti-
mizations and adaptations are required.

IV. OUR SOLUTION
A. Overview

We show the overview of our solution in Fig. 2. Our solution
consists of three modules: GPU-based data structure architecture
module, data structure parallel generation module, and random
access operation module. All relevant data structures are gener-
ated and stored directly in the GPU, which avoids unnecessary
data transmission overhead between the CPU and GPU. The
input is TADOC compressed data, and the output is the result of
random access operations.

Workflow Between Different Modules: The three modules
work together to enable random access to compressed data on
the GPU. In the data structure architecture module, we cover all
data structures in the study [30], and develop the GPU-based
CSR buffer and Hash table to record the frequency of words and
rules, which can achieve significant space savings while assur-
ing fast indexing performance. They are capable of supporting
operations in the random access module. The data structures
are generated by the data structure generation module, in which
we develop a GPU-based two-phase traversal for preprocessing.

HU et al.: ENABLING EFFICIENT RANDOM ACCESS TO HIERARCHICALLY COMPRESSED TEXT DATA ON DIVERSE GPU PLATFORMS

The preprocessing calculates the space occupancy in advance,
which is a prerequisite for allocating data structures. In the
random access operation module, we utilize parallel threads
provided by GPU to process multiple random access operations
simultaneously. For output generation, the results from separate
threads are to be merged and copied back to the CPU.

Solution to Challenges: Our solution can address the chal-
lenges mentioned in Section III-B. The two-phase traversal
can manage the counting and offset calculation to address the
challenges in the generation of random access data structures
on GPU. Since the sub-DAG of the same rule is identical, we
can avoid processing the same content in different working
threads by parallelizing at the rule level from the root. Besides,
parallelism on the rule level provides high utilization of thread
computing resources. To handle data conflicts in random ac-
cess, we develop a double-parsing design. In the first parsing,
we assume that offsets provided by the same batch of update
operations are relevant to all former operations, implying the
restriction on the sequence of updates within the same file. In
the second parsing, we regard the batch of updates come at the
same time. The given offsets are based on the same text status
and are independent of other concurrent insert operations. For
the edge-grade GPU platform, we provide adaptation detailed
in Section V.

Difference From Previous Work: Our solution has signifi-
cantly different application scenarios compared to the previous
G-TADOC [8]. First, G-TADOC necessitates the scanning of the
whole dataset. In contrast, our solution aims to involve the mini-
mum memory footprint, focusing more on data locality on GPU.
Second, previous G-TADOC does not involve data changes,
while our solution involves updates to the compressed data on
GPU. Third, previous G-TADOC launches massive threads for
the same traversal-based analytics task, which is not referable
due to the task diversity of threads in our work. Besides, our
solution is significantly different from previous random access
on CPU [30]. Although the previous random access work [30]
adopts similar data structures, it lacks fine-grained large-scale
thread parallelism and cannot address the challenges mentioned
in Section III-B. Therefore, the previous work [30] cannot be
executed efficiently on GPUs.

Next, we explain in detail about these modules, including
data structure architecture module in Section I'V-B, data structure
generation module in Section IV-C, and random access operation
module in Section I'V-D.

B. Data Structure Architecture

We show the detailed data structure architecture in this part.
Different from the previous work [30], we propose a new data
structure rule2file and use GPU-friendly storage formats to store
our data structures. In detail, rule2file is used in count and
search to achieve better performance, and we use thread-friendly
buffers and GPU-based Hash tables to fully utilize the GPU. We
cover the main data structures mentioned in Section II-A, which
are well optimized on GPU.

Analysis: We can infer the sizes of the data structures
rootOffset, bitmap, and records from the characteristics of the

2703

wordarray|0|2|5|9|...|

rule array | R10| R11| Rzol R21| Rzzl R30| R31| R3z| R33| |

frequency array |fwlf11|fzolfz1|fzz|f3o|f31|f32|f33| |

Fig. 3. Illustration of the word2rule storage form.

compressed data and the operations. These three data structures
are stored in the form of one-dimensional arrays and can be
allocated directly from the CPU. For the other data structures,
including rule2location, word2rule, and rule2file, their space
occupations keep changing during the generation process. Since
GPU has limited ability to manage dynamic memory allocation
between threads, we develop a preprocessing procedure, detailed
in Section IV-C, to calculate the buffer size before data gener-
ation. We also extend the Hash table and CSR storage format
to attain efficient indexing while ensuring space savings. We in-
troduce the detailed data structures of rule2location, word2rule,
rule2file, and records as follows.

word2rule: This data structure is useful for word indexing. It
is stored in the CSR format in GPU memory. When receiving
rules, our solution generates the word2rule index in ascending
order. Fig. 3 shows an example of the storage form of word2rule
on the GPU. It consists of three arrays: wordArrary, ruleArray,
and freqgArray. In detail, wordArrary provides the mapping from
each word to a range in ruleArray, which stores all rules it
appears; ruleArray records the specific rules that each word
appears; freqArray records the appearing frequency for each
word-rule pair. The frequency stored in freqArray corresponds
to the rule index at the same location in ruleArray. To be specific,
R;; represents the (j + 1)th rule where the ith word resides, and
so does to fregArray. Given a random word, we can efficiently
fetch rules with its presence and its frequency. For instance,
when conducting the search(f;, w;) operation, we need to locate
rules containing the word we are looking for. That is, we need
to use wordArray and ruleArray in the word2rule CSR buffer:
we first fetch wordArray[j-1] as l; in the CSR buffer and then
fetch wordArray[j] as h;. After that, we can iterate through
ruleArray[l;, h;) to obtain all rules containing wj. Performing
count(f;, wj) is similar.

rule2location: This data structure is useful for offset-related
operations. We record the relative offsets in the root rule due
to the parallel generation process mentioned in Section IV-C.
The rule-location mappings are stored in two arrays: ruleArray
and locationArray. The first is ruleArray, which provides the
mapping from each rule to its corresponding range in locationAr-
ray. The second is locationArray, which specifies the appearing
locations of each rule. The number of occurrences of each rule in
the original file, as well as the total number of occurrences of all
rules, are unknown. To generate rule2location, in our two-phase
traversal, we construct ruleArray in the first phase, and then
construct locationArray with the assistance of ruleArray in the
second phase.

rule2file: This data structure is constructed in the form of a
GPU-based hash table to facilitate counting and searching. It

2704

— — ([— [

« Locate the «Insert the “string”

element via “f” « Traverse the to “records” ,set

and “offset” [gi:ttig:; the related bit to «Update
inroot. Ifitis a “offset” true, and add a “rootOffset”
word, go to pointer to the

step 3. records in the DAG.

(a) Insert progress
Structure of
records

‘ filelD ‘ fileOffset ‘ ruIeID‘ ruleLocation |replaceWord ‘content‘ ptr‘ ruleStartOffset ‘

(b) Data structure of records

Fig. 4. Illustration of records and insert.
fe- - threadl - >}e- - thread2 - — >}e- - thread3 - — > ,t_hr_efd_..;
I I
| R1 | R2 |w1|spt1| Rkl |spt2| R3 | |_>:| - |
thread4 thread5 thread6 thread; T
[[I P T R
:|w2|w4|: :|R4|w5|: :|R4|w5|: I|w1|R5|:
v P S e s i J N, -
thread8 thread9 thread10
________] |—______-.| |‘___________\
I|w1|w1|: :lwllwll: :|w2|w3|w4|:
N e e - - [L N —— B !

Fig.5. Conventional GPU-based DAG traversal.

records the frequencies of rules in files and returns the number
of occurrences for each rule-file pair. In detail, the key of this
hash table is built featured with a <file, rule> pair while its value
is the frequency of the <file, rule> pair. For count and search
operations, it can work with word2rule to realize the indirect
mapping from words to files. The hash table takes the rule index
and the file index as parameters and supports multi-threaded
insert and search.

records: This data structure is used for insert and append.
The insertion progress is shown in Fig. 4(a) and the content
of records is shown in Fig. 4(b). When performing insert, we
need to integrate the inserted data into records, where fileID
represents the exact file we insert, fileOffset represents the offset
we insert in this file, rulelD is the rule we insert, ruleLocation is
the inserted location of the rule, replace Word is the original word
we insert, content is the string we insert, ptr is the list pointer
to the recordID inserted at the same place (default as null), and
ruleStartOffset is the starting offset of the rule to insert. An
example of insert using records is illustrated in Section I'V-D.

C. Data Structure Generation

Analysis: As discussed in Section IV-B, to generate the data
structures for random access, we need to calculate the space
sizes for different data structures in the first phase, and then
allocate the memory space according to the determined sizes
in the second phase. We show an example of traditional BFS-
based traversal in Fig. 5, where each node is associated with a
thread. However, it has three limitations. First, it treats the rules
that appear multiple times as distinct rules, which cannot utilize
the data redundancy. Second, it associates each rule with one
thread, which involves large data transmission overhead between

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

threadl thread2 thread3 thread4 thread5
" T— " VT T— " YT T — " VT T VMmoo T
1 1 1 1o !
:LRTI.:RZ.:.:IE..:
[[} [[
: [| : 1 [:
||w2 w4|l ||R4 w5|| I|W1|R5|| Ilwl w1|I '|w2|w3|w4|I
1 [[[[)
______ 7 ~-—- ——— - - J—— [N e e e e - —
(a) Phase 1: Light-weight breadth-first traversal
'thread3 | threadd ! 'threads | thread? "threads...
\ A __ \o—_ Ao - P
) £ F A

[Rt [R2 | wi [spt [R2Z | w3 [sp2 [R3] .. |

\threadl thread2 \ thread5 L thread8
[t S Y oooooo " J ittt \
i[w2[wa]i [rafws] i[raws]i | [wi]es] |
———————— R I S e I Y A
| ! | I |
I|w1|w1|: I|w1|w1|:,|w2|w3|w4|I
_______ | _______ e _ _________)
(b) Phase 2: Sequential-guaranteed traversal

Fig. 6. Two-phase DAG traversal on GPU.

threads. Third, to calculate offsets, a sequence-guaranteed DFS
traversal is required. Based on these reasons, we abandon the
conventional DAG traversal design.

Two-Phase Traversal Design: We develop a two-phase traver-
sal that is capable of efficiently generating the random access
data structures. Fig. 6 illustrates our two-phase traversal. The
first phase is a light-weight breadth-first traversal, as shown in
Fig. 6(a). It needs to output the rule frequencies for memory
allocation. The second phase is the sequence-guaranteed traver-
sal, as shown in Fig. 6(b), in which we generate data structures
based on the results from the first phase. This design utilizes
the computing resources of threads to the maximum, attaining
substantial time savings compared with the conventional design.
We show the detailed design of the two phases as follows.

Phase 1: Light-Weight Breadth-First Traversal: The first
phase is used for calculating rule frequencies.

1) Design: We utilize the GPU kernel to perform probing at
each DAG depth in this phase. During the first phase traversal,
we traverse through the DAG from top to bottom for rules, and
record the frequencies of all rules of the text data to a temporary
array ruleFreq.

2) Algorithm: We show the pseudo-code of the first phase
in Algorithm 1. The function breadthFirstTraversal sets the
variable stopFlag to false at line 2 and initializes the two arrays
currFreq and nextFreq at line 3. The array currFreq records the
rule frequency from the higher depth, while the array nextFreq
records the rule frequency in the processing depth. The do-while
loop of lines 4-8 repeatedly counts the rule frequency of the
current DAG depth. The variable stopFlag is responsible for
judging the cease time for the do-while loop. In each iteration
of the loop, the stopFlag is first set to true, and the GPU kernel
getFreq is then invoked to calculate the rule frequencies in the
current depth and update stopFlag. After the call to the kernel,
elements in the currFreq shall be set to 0, and the references
to currFreq and nextFreq shall be swapped in line 7. Therefore,
nextFreq generated in the current depth can be directly utilized
in the next iteration.

HU et al.: ENABLING EFFICIENT RANDOM ACCESS TO HIERARCHICALLY COMPRESSED TEXT DATA ON DIVERSE GPU PLATFORMS

Algorithm 1: Phase 1: Light-Weight Breadth-First Traver-
sal.
1: function breadthFirstTraversal(rule F'req)
stopFlag + false
initialize curr Freq and nextFreq
do
stopFlag < true
getFreq(currFreq, nextFreq, ruleFreq, stopFlag)
with at least rules.size threads
7 swap currFreq and nextFreq
8: while stopFlag is false
9: end Function
0: function getFreq(curr Freq, next Freq, ruleFreq,
stopFlag)
11: ruleldx < tid >GPU thread ID
12: if ruleldz is not in the range of rule indexes then
13: return

AN

14: endif

15: if currFreq[ruleldz] is O then
16: return

17: endif

18: updateFreq < currFreq[ruleldx]
19: atomicAdd(ruleFreq[ruleldz], update Freq)
20: for each subFleldr in rules[ruleldz] do

21: if subEleldx is in the range of rule indexes then
22: atomicAdd(nextFreq[subFEleldx], updateFreq)
23: end if

24: end for

25: stopFlag < false
26: currFreqruleldx] < 0
27: end Function

The function getFreq calculates the frequency for each rule
based on currFreq. Line 11 stores the thread ID in ruleldx. Then,
if ruleldx is not in the range of rule indexes, that is, between 0
and rules.size, the kernel returns at line 13. For rules that do not
appear in the last depth, the kernel directly returns in line 16.
Line 18 sets the variable updateFreq as the rule frequency in the
last iteration of ruleldx. Line 19 updates the rule frequency for
ruleldx. For each directly derived element subEleldx of ruleldx,
we first check if the element is a rule in line 20, and add the rule
frequency of ruleldx at the relative position in the array nextFreq
in line 22 if the element is a rule. In this way, we distribute the
tasks to threads on the rule level. Line 25 sets stopFlag to false,
indicating searching necessity in deeper depth. At the end of the
kernel, the frequencies in currFreq are refreshed in line 26 for
future updates at the next depth.

3) Complexity analysis: We analyze the complexity of
Algorithm 1 in this part. The traversal of the DAG takes D
rounds, where D denotes the diameter of the DAG. Each iteration
finishes with the swapping of the arrays currFreq and nextFreq.
In each iteration, we allocate one single thread to process the
Jjth rule. We define the variables e;; and ¢;; as the existence
and the processing cost of the jth rule in the ith level of the
DAG respectively, and ¢; as the length of the jth rule. Note that

2705

curr Freq[j] differs in each level, even though this property is
not explicitly exhibited in the pseudo-code:

~_J0, currFreq[j] =0 o
%7, currFreq[j] #0 7
Cij = eijfj V O(l) (2)

The theoretical time complexity of each level of DAG is
bounded by two folds: 1) the average workload of all threads,
and 2) the maximum cost of particular rules with extremely large
rule length. In this term, the time complexity can be naturally
inferred in (3):

N,

=3 3)

j=1

Tbh; =0

where T'b; denotes the time complexity of traversing the ith level
with balanced workloads, /N, is the number of rules except for
the root rule, and NN, is the number of processing cores of GPU.
Most rules can only be processed on one processing core,
which introduces another time bottleneck, as shown in (4):

N,
Tu; = O \/cij . 4)

Jj=1

In (4), T'u; denotes the time complexity of traversing the ith
level with unbalanced workloads, depending on the rule with the
highest cost. In real-world circumstances, lengthy rules rarely
appear, whose frequency can be approximated to a constant
value or even omitted. Hence, the overall theoretical time com-
plexity of the first-phase traversal can be written in the following
form:

D
T=0 <Z Tb; v Tuz-) 5)

i=1

D N. . N,
=0 Z(W)V \/Cij (6)

i=1 j=1

D &
=0 Z 4. 7
j=1

Phase 2. Sequence-Guaranteed Traversal: The second phase
is used to allocate and generate the data structures for random
access.

1) Design: We utilize the GPU kernel to distribute the work
on each root element to different threads in this phase. During
the second phase traversal, we record the offset, file ID, and
the ancestor in the root rule for each appeared rule to the
data structure rule2location. Additionally, we keep track of the
offsets within root elements in rootOffset.

2) Algorithm: We show the pseudo-code of the second phase
in Algorithm 2. The seqTraversal function takes the root rule,
which is stored in rules[0], as the parameter. seqTraversal first
generates rootOffset in line 2 to record the accumulative offsets
for eachroot element. Then, it calls the GPU kernel seqLaunch in
line 3 to execute sequence-guaranteed probing on each element

2706

Algorithm 2: Phase 2: Sequence-Guaranteed Traversal.

1: function seqTraversal(rules[0])
2: initialize rootOf f set
3: seqLaunch(rules[0], rootOf f set) with at least
rules|0].size threads
4. aggregate rootO f f set
5: end Function
6: function seqLaunch(rules[0], rootOf fset)
7. rootldx <+ tid >GPU thread ID
8: if rootIdx is not in 0 to rules[0].size then
9: return
10: end if
11 fileldx < getFile(rootldx)
12: eleldx < rules[0][rootldzx]
13: seqScan(eleldx, fileldx,rootldx,rootOf fset)
14: end Function
15: function seqScan(eleldx, fileldz, rootldz,
rootOf f set)
16: if eleldz is in the range of word indexes then
17: rootOf fset[rootldx] += wordLengthleleldx]
18: end if
19: if eleldz is in the range of rule indexes then
20: rule2 file.append(eleldx, fileldzx)
21: newLoc. fileldx < fileldx
22: new Loc.rootldx < rootldx
23: newLoc.ruleO f fset < rootO f fset[rootldx]
24: rule2locationeleldz].append(new Loc)
25: for each subEleldx in rulesleleldx] do

26: seqScan(subEleldx, fileldx,rootIdx,
rootOffset)

27: end for

28: end if

29: end Function

of the root rule simultaneously. After the invocation of the kernel,
rootOffset stores the size of each root element. Line 4 aggregates
the element sizes in the array to obtain the global offsets.

The GPU kernel seqgLaunch invokes the device kernel seqScan
to search through the root element identified by thread ID and
sets rootOffset for this element. Line 7 stores the thread ID
in rootldx. Then, if rootldx is not in the range of element
indexes in the root rule (between O and rules[0].size), the
kernel returns in line 9. Lines 11-12 store the processing root
element index in eleldx and the corresponding file index in
fileldx. Line 13 invokes the device kernel seqScan to perform
sequence-guaranteed traversal for the root element identified by
rootldx.

The device kernel segScan recursively probes the given rule
or word in the sequence-guaranteed strategy. The processing
element is identified by the parameter eleldx. If eleldx is within
the range of indexes of word elements, segScan adds the length of
the word to rootOffset for the original root element in seqLaunch,
as shown in lines 16-18. If eleldx is within the range of indexes
of rule elements, seqScan executes as in lines 19-28. Line 20
appends the (ruleldx, fileldx) pair to rulefile. Lines 21-24

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

record the rule occurrence with fileldx, rootldx, and ruleOffset in
rule2location. Then, lines 25-27 probe each element within the
rule by calling the same kernel seqScan. The invoked seqScan
then searches derivative elements of this rule successively.

3) Complexity analysis: Algorithm 2 splits the root rule into
multi-threads. For the 7th thread, it traverses the whole sub-DAG
of the i th element in the root rule. To ensure the sequence, we
need to traverse the DAG in the depth-first order. The theoretical
time complexity of Algorithm 2 is bounded by the following
two folds: 1) the average workload of all threads, and 2) the
maximum size of all the sub-DAGs we process. According to
the statistics of all the datasets in the experiments, the length of
the root rule dwarfs the processing cores in GPU. Meanwhile, the
real-world data rarely appear repetitive patterns with excessive
length, which bounds the maximum size of a single rule (except
for the root rule). These two features of datasets guarantee the
workload balance. In the 7 th thread, we traverse the entire sub-
DAG of'the ith element in the root rule and append a new token in
the array rule2location for each rule in the sub-DAG. Then, the
time complexity of Algorithm 2 is derived in (8), where N0t
signifies the number of elements in the root rule, N, signifies
the number of processing cores, and s; signifies the tree size of

the ith element:
1 Nroot
TO(]\[CZOi'Si). ®)

i=1

D. Random Access Operations

We assume that random access operations are performed in
batches of thousands of operations. Our work utilizes the GPU
to perform operations concurrently within the same batch. For
operations with no data dependency, such as count, search, and
extract, we arrange different threads to handle them separately.
Besides, we develop special strategies to solve the data conflict
in parallelism for append and insert operations. Additionally,
our system supports mixed operations. Our detailed design of
random access operation processing is as follows.

Count(file, word): We arrange each thread to process one
count operation in the same batch of operations. The counting
work utilizes the data structures of word2rule and rule2file to
build frequency mapping from words to files using the inter-
mediate rules. For the cases where word2rule[word] has a large
content size, we allocate additional threads to help accelerate the
counting processing. By default, we empirically set the number
of threads to [word2rule[word]/64].

Search(file, word): We schedule one thread to handle one
search operation within the same batch. The searching process
uses word2rule and rule2location to map words to their specific
locations in the DAG with the transitional rules. Extra threads
are allocated in operation to handle the cases when the word has
substantial occurrent rules.

Extract(file, offset, length): We also assign one thread for each
extract operation in a batch. During the extracting process, we
first search rule2location for the word that corresponds to the
offset. Then, if the size of the current output is less than length,
we add the pointing word by character to the output. After the

HU et al.: ENABLING EFFICIENT RANDOM ACCESS TO HIERARCHICALLY COMPRESSED TEXT DATA ON DIVERSE GPU PLATFORMS

Step4 : Update rootOffset, ['
and change rootOffset[4] _ _‘“‘
from 28 to 30 ’,/"'___

el | bitmap0 ! -

Step1 : Locate filel
and offset 4 in root

Step2: Find the rule at offset
4, R2, and set the first bit of
bitmap2 from 0 to 1

1

mmmm

wl

Fig. 7. Example of insert.

completion of adding the current word, we locate the following
word in rule2location and repeat the process described above.

Insert(file, offset, string): Insert operations cause varied re-

sults if processed in different orders. We develop a novel double-
parsing strategy to resolve the conflict between the processing
order and parallelism. In detail, we devise two different insert
functions, insert in sequence and insert in batch, which parse
the argument offset in different ways in order to accommodate a
variety of situations. The first function comprehends offset as the
offset of the text data modified by the last insert. It inserts strings
in the order specified by the batch, and has a comparatively
lower speed because of the restrictions on parallelism. The
second function regards the offset as the corresponding location
of text data before this batch of inserts happens. It inserts strings
with full parallelism and attains high performance. The primary
distinction between the two functions is the parsing style of the
parameter offset in the insert operation. Therefore, data conflict
isresolved between insertions in the second case, which supports
full parallelism. The two functions have different practical appli-
cation scenarios. Although the first function has a comparatively
low processing speed, it is indispensable when handling nested
insertions within a batch. Meantime, the second function is
capable of handling concurrent insertions efficiently. It should
be noted that we do not recompute the DAG and generate new
rules until the inserted entries reach the recomputation threshold
we set in the system configuration. Once we reach the threshold,
we merge records with the previous data, perform recompression
to construct a new DAG, and recognize new rules. The detailed
design is as follows.

e [nsertin sequence: In this case, we assume the insertions in
the batch are supposed to execute in the given order. We first
allocate one thread for each file because of the sequence
restriction in each file. Among these threads, insertions
are processed in sequence. Every insertion includes three
phases, the insertion locating phase, the recording phase,
and the data structure updating phase, in which the last
phase takes the majority of the time. The detailed process
is shown in Fig. 4(a) and we take the example of Fig. 1
to perform insert(f1, 4, wy) for illustration, assuming that
the size of each word is 2 bytes. The insert progress is
shown in Fig. 7. First, we locate filel and offset 4 in the

2707

root. Second, we find the related rule R2. Third, we add
the new content w1l to records and update related entries.
Fourth, we update rootOffset.

During the data structure updating phase, we timely re-
flect changes in the text on data structures rootOffset and
records. Updates to rootOffset increase the offsets behind
the insert location by the inserted string length, and updates
to records increase the offset of the previous records located
behind the new insertion position. Both types of updates
lead to modification on a large scale, so we invoke new
kernels to process the update. Experiments show that such
updates account for more than 90% of the operation time.
Despite the limitation on sequence, this function still attains
a preferable performance because the most heavy-load
phase is parallelized with efficiency.

® [nsertin batch: In this case, we assume the insertions in the

batch are supposed to execute simultaneously. We partition
the work on the operation level and assign each insertion
to different threads. Since the parameter offset for each
insertion is based on the text data before the operation batch
happens, we keep the data structure constant in each thread.
We integrate all updates to data structures in one round after
the insertions. As in the function, insert in sequence, we
invoke kernels to parallelize the increment on rootOffset
and records. This function accomplishes parallelism on a
higher level and exhibits impressive speedup.

Append(file, string, offset): We parallelize the append opera-
tions by arranging one thread responsible for each of the append
operations. After filling into the data structure records in threads,
we post-process records to solve data conflicts for appends
at the same location. We assume that the operation appears
earlier in the batch executes first, so we increase the offsets of
the following records by the previous appending length. The
post-processing is also performed on the GPU kernel. With
the same number of operations, the performance of the append
function is much better than insert because it does not have to
deal with rootOffset. Similar to insert, the increased data size
can be obtained from the string in the user-defined operation.
Both insert and append store the increased data in a separate
data structure of records, so the system only needs to update the
corresponding offset positions.

Mixed Operations: We develop an offset-snapshot strategy
to parallelize processing mixed operations while guaranteeing
the operation execution order. On receiving a batch of mixed
operations, we first collect all insert and append operations
respectively, and send them to single-operation subsystems de-
scribed above for parallel execution. These two operations can
be processed in full-parallelism when performed on the same
state of the text data, as append does not invoke offset changes
to the same file, allowing parameters of the insert operations
to be parsed correctly. During the execution process, we record
the operations’ order in batch to the data structure records for
the rest non-updating operations to refer to. Additionally, as both
operations cause offset changes in the data structures that will be
accessed by the rest of operations such as count, our system will
not finalize offset updates immediately after execution. Instead,
it will create an array to record the update snapshots in the order

2708

of execution and finalize all offset updates after the execution of
all operations. Next, after performing all updates to the text data,
we perform the rest read-only querying operations in parallel,
including count, search, and extract. For the count operation that
does not involve offset, it checks the hash tables to obtain the
word number in the unmodified text data, and counts the word
in the added context by searching through entries with a smaller
value of execution order in records. For the operations taking
offset as the parameter, including search and extract, they first
use the offset update snapshot array to obtain the certain offset
changes of the target file and then access data structures with
offset changes to process queries. They will also make use of
entries with a smaller value of execution order in records to
complete the results.

E. Optimization Summary

We summarize our optimizations in data structure generation
and random access operation as follows.

Thread Level versus Warp Level: When designing the two-
phase traversal in Section IV-C, we can choose the parallelism
granularity of processing rules, at thread level or warp level. We
find that rules with elements less than 32 account for more than
99% of the total rules. Because the number of threads within a
warp for Nvidia GPU is 32, using the warp level design cannot
fully utilize the hardware parallelism. Accordingly, we choose
the thread-level design, as shown in Fig. 6.

Load Balance: Load balancing is critical to GPU perfor-
mance [62]. In designing light-weight traversal, in each layer
shown in Fig. 6(a), we associate a thread with each rule. Because
each rule contains an approximate number of elements and each
thread processes the direct elements of the rule, this strategy can
achieve good load balancing.

Locality: Locality plays an important role in GPU through-
put [63]. The data structures in Section IV-B help GPU to locate
the target data in the GPU memory instead of scanning the
entire data for random access queries, alleviating the pressure
of memory access for the GPU. For example, the combination
of data structures of word2rule and rule2file manage to build
the mapping from the target word to the file for count oper-
ation, while word2rule, rule2location, and rootOffset together
construct the mapping from the target word to all its locations
in a file for the search operation.

Occupancy: We make use of the CUDA API cudaOccupan-
cyMaxPotentialBlockSize to determine the block size and grid
size for each kernel to maximize the active warp ratio on the
SMs. Moreover, occupancy is influenced by the execution of
tasks within blocks and the number of registers utilized by each
thread. In our kernel design for random access operations, we
allocate extra threads to process count and search operations
involving additional data structure accesses to achieve a more
even workload distribution among threads. We also make use
of NCU to find the optimal number of registers for each thread,
which is 32.

Adaption to SM Architecture: We incorporate algorithm de-
signs to make use of the SM architecture in data structure
generation and the execution of random access operations. For

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

data structure generation, in the first-phase traversal, we load a
portion of the data structure, specifically the set of consecutive
rules that are stored in adjacent locations of the rules data
structure, into shared memory to accelerate processing, as each
thread block consistently handles the same set of rules. In the
second-phase traversal, due to the DAG structure randomness as
well as the sequential traversal requirement, adaption strategies
to the SM architecture are limited. We have explored methods of
reusing rules at the root level and bottom-up traversal, but both
show performance reduction. Our future work targets managing
rules’ sizes from the compression stage in order to dynamically
balance workloads between threads by assigning subtrees with
similar sizes.

For the five random access operations, how to adapt each
operation to the GPU SM architecture depends on the storage
features of involved data structures. Both count and search
operations utilize hash tables to fetch word-to-rule and rule-to-
file frequencies. Additionally, search queries rule2location with
random rules, making memory access inconsistent for each SM.
Therefore, we can only utilize the shared memory in SM for
these two operations when invoking multiple threads to process
one complex query. The append operations are fully adaptable
to the SM architecture. As append operations are expected to
perform exactly as the query arrival order, we arrange adjacent
queries to the same thread block and load the corresponding part
of the linear data structure records to the shared memory.

Both extract and insert operations are applicable to certain
SM optimization by sorting queries with offset, fetching the
smallest subtree for each SM in advance, and then loading the
subtree content to the shared memory. This optimization brings
about 10.47% and 3.22% performance improvement in extract
and insert respectively, but results in 75.94% and 107.56% more
time consumption (including preprocessing) compared with the
current realization. In this case, we consider that the processing
overhead outweighs the benefits of certain SM adaption in
these two operations. Notably, we have incorporated the shared
memory utilization in the insert operation’s after-insert update
part as both records and rootO f f set follow a linear update
pattern.

V. ADAPTATION TO DIFFERENT GPU PLATFORMS

With the development of architecture and the growth of var-
ious application requirements, GPUs become more diverse and
adaptable. In the previous optimizations, we mainly focus on the
GPUs deployed on server-grade GPU platforms. In this section,
we also explore random access optimizations and adaptation to
edge-grade GPU platforms.

A. Server-Grade GPU Platform

Nowadays, a growing number of data analytics tasks adopt
heterogeneous hardware for acceleration, and the discrete GPU
often serves as an acceleration component of the server-grade
platform, enhancing the computing capacity of the whole sys-
tem. In such heterogeneous systems, CPU, as a host device,
transmits the input data to the GPU. The GPU generates data

HU et al.: ENABLING EFFICIENT RANDOM ACCESS TO HIERARCHICALLY COMPRESSED TEXT DATA ON DIVERSE GPU PLATFORMS

structures and performs the operations. This is one of the most
traditional heterogeneous computing usages.

Analysis of the Discrete Server-Grade GPU Platform: On
the discrete server-grade GPU platform, both the CPU and the
GPU have their own discrete memories, which are not shared,
so communication relies on PCle to transfer data between them.
The host CPU is usually used to send data. The GPU device is
responsible for executing computing tasks such as extract and
then sending back the results to the host. The server-grade GPU
has complicated the memory hierarchy, prompting us to design
code carefully to fully utilize this hierarchy.

Adaptation of Random Access to the Server-Grade GPU Plat-
Sform: Our adaptation of random access to the server-grade GPU
platform is mainly considered from the programming model
perspective. Nvidia GPUs, as one of the most widely used server-
grade accelerators, have been applied to diverse data centers and
the cloud, and they adopt the CUDA programming model [64].
Accordingly, we use CUDA to demonstrate the benefits of our
random access optimizations on GPU. Specifically, we use the
CUDA API, cudaMalloc(), to allocate the GPU memory buffer,
and use cudaMemcpy() to transfer data from CPU to GPU.
Accordingly, all the optimizations in Section IV are developed
in CUDA, and the effectiveness is verified in Section V1.

B. Edge-Grade GPU Platform

With the development of edge computing and IoT [65], [66],
[67], [68], [69], [70], edge platforms also integrate GPU de-
vices boosting the application in many fields. For example,
Jose et al. [14] applied Nvidia Jetson TX2 edge GPU for a
surveillance system. Different from the server-grade GPU plat-
form, the edge GPU is usually integrated with the CPU together,
and both the CPU and the GPU on the edge share the same
memory, which brings great potential convenience and further
optimization opportunities to our random access design on the
compressed data.

Analysis of the Edge-Grade GPU Platform: Many vendors
have released their edge-grade GPU platforms, which adopt
a CPU-GPU integrated architecture, such as Nvidia’s Jetson
series. The fusion design of the integrated edge platform has
two distinct features. First, on the edge platform, GPU and
CPU share a unified memory, which is scheduled and allocated
by the memory controller fabric. This structural design greatly
improves the collaborative processing capability of the GPU and
the CPU, avoids repeated memory copies and data transmission
via PCle, and improves program utilization efficiency. Second,
due to the cost and energy efficiency constraints, the computing
capacity of the edge-grade GPU platform is lower than those
of the discrete server-grade GPU platform. For example, the
edge GPU platform Nvidia Jetson AGX Xavier has only 512
cores with 854 MHz base clock speed [71], [72], [73], while the
discrete GPU platform Nvidia RTX 3090 has 10,496 cores with
1,395 MHz base clock speed [74], [75].

Random Access Adaptation to Edge-Grade GPU Platform:
For the edge-grade GPU platform, we still use CUDA to enable
random access to the compressed data. It should be noted that
although Nvidia’s edge-grade GPU platform, like the Jeston

2709

series, is different from the discrete GPUs, the edge platform
is still compatible with the server-grade GPU syntax; that is,
we can still use the CUDA API like cudaMalloc() that we
use on the server-grade GPU platform. However, this does not
utilize the novel features of the integrated design and can drag
down the overall performance. Therefore, we use its feature of
unified memory for the structures of random accesses. Under this
programming model, cudaMallocManaged)() is used to allocate
asection of memory in the unified memory, which can be directly
accessed by both CPU and GPU. Hence, we avoid using the
combination of cudaMalloc() and cudaMemcpy() to allocate a
section of duplicate memory buffer on the discrete GPU and
transfer data through PClIe. Although our solution in Section IV
has reduced the data transmission from CPU to GPU as much
as possible, we still have unavoidable data transmission such as
the input data, which we have to transfer from CPU to GPU
in the discrete design. Hence, in processing large data, the
limited PCIe bandwidth often drags down the whole executing
time. Fortunately, this is solved on the integrated architecture
of the edge-grade GPU platform. Meanwhile, due to changes
in the memory structure, requirements have been placed on the
utilization of edge GPU memory. Therefore, to utilize the so-
phisticated memory hierarchy on the edge platform, we adopt a
more fine-grained strategy to allocate variables. First, we assign
all constants in constant memory instead of unified memory to
better use its low latency. Second, we put small data structures
like bitmap into shared unified memory due to their relatively
small size. Third, we allocate other huge data structures to global
unified memory to avoid two copies of the same data as well as
perform better-multithreaded access, thus achieving benefits in
both performance and memory.

VI. EVALUATION
A. Experimental Setup

Methodology: The baseline we compare to is the random ac-
cess implementation of TADOC [30], which is the state-of-the-
art method identifying and realizing the five common random
access operations in compressed text analytics. It accelerates
random access to hierarchically-compressed data and eliminates
the limitation on compressed data updates. Our solution enables
efficient random access in the GPU environment. In our eval-
uation, we measure the performance of our solution and the
state-of-the-art method from multiple dimensions. We generate
100,000 queries for the five different types of random access
operations. For count and search, we choose a word at random
from a file’s vocabulary. For extract, we extract content by
selecting random offsets in a file, and we set the average length
of the extracted content to be 64 bytes. For insert and append,
the string to be inserted or appended is made up of randomly
selected words from the dictionary, and the average length of
the inserted string is 64 bytes; the offset is random for insert.

Platform: We evaluate the methods on three platforms, as
shown in Table I. We use two server-grade GPU platforms
with different architectures, Nvidia Geforce RTX 2080 Ti GPU
(Turing architecture) and Nvidia Geforce RTX 3090 GPU (Am-
pere architecture), in our experiments. The RTX 3090 platform

2710

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

I Count immmi Search I Extract B Append ez Insert
103 103
4 % PE-Y X Q
3 K 5 S 102 S % % = S 10?2
(] (] « 35 p % " Y S
e X g o
il %D Y X ful ¢ O .
. X Y- & 10! 3 < 4 ¢ & 10 *
O K g G K s
p D X (] X % 9 .
3 N X (] % % . 4
< 100 D 100 b
A B C D E A B C D E A B C D E

(a) Geforce RTX 3090

Fig. 8. Speedups of random access operations.
TABLE I
EXPERIMENTAL PLATFORMS
Platforms Edge-Grade Server-Grade
Jetson AGX Xavier RTX 2080 Ti RTX 3090
Cores 5§2C ggUCir;Se’s 4352 GPU cores 10496 GPU cores
GFLOPS (float) 1410 13450 35580
Bandwidth (GB/s) 137 616 936.2
Price ($) 699 999 1499
TDP (W) 30 250 390
. GPU : CUDA 8.0,
Programming Model CPU : OpenMP CUDA 8.0 CUDA 8.0
TABLE II

DATASETS (“S1ZE” REPRESENTS THE ORIGINAL UNCOMPRESSED SIZE)

Dataset Size File # Rule # Vocabulary Size
A 2.1GB 4 2,095,573 6,370,437
B 580MB 134,631 2,771,880 1,864,902
C 2.9GB 1 8,821,630 23,959,913
D 62MB 1 36,882 240,552
E 50GB 109 57,394,616 99,239,057

is equipped with an Intel(R) Core(TM) i9-10900X CPU and
128 GB memory, based on the Ubuntu 20.04.3 LTS (GNU/Linux
5.8.0-55-generic x86_64) operating system. The RTX 2080Ti
platform is equipped with an Intel(R) Core(TM) 19-9900 K CPU
and 64 GB memory, based on the Ubuntu 20.04.2 LTS operating
system. The baseline uses the 19-10900X CPU of the RTX 3090
platform. We also adapt our optimization to an edge-grade GPU
platform, Nvidia Jetson AGX Xavier. It comprises an integrated
512-core Nvidia Volta GPU and 8-core Carmel ARMv8.2 64-bit
CPU. The operating system we use is Ubuntu 18.04.4.

Datasets: The datasets used in our evaluation are shown
in Table II. These datasets are available and widely used in
previous works [7], [8], [9], [28], [29], [30], [32]. Dataset A
is a Wikipedia collection consisting of four files [76]. Dataset
B is NSF Research Award Abstracts (NSFRAA) collected from
UCI Machine Learning Repository [77]. Dataset C is a DBLP
collection of web documents [78]. Dataset D is COVID-19
data collection from Yelp [79]. Dataset E is a large Wikipedia
dataset [76].

B. Performance

In our evaluation, the performance speedup of our solution
over the baseline is shown in Fig. 8. On average, our solution
outperforms the baseline by 52.98 x. Specifically, our solution
achieves 24.59 x speedup for count, 16.26 x for search, 44.69 x

(b) GeForce RTX 2080Ti

(c) Jetson AGX Xavier

for extract, 53.52 x for append, and 124.86 x for insert. We have
the following observations.

First, in terms of operations, we achieve relatively high
speedups in the append, extract, and insert operations, and
moderate speedups in search and count. The reason for the high
performance in the first three operations is that we can perform
these operations in nearly full parallelism. Although count and
search perform in parallel on the operation level, the differences
between query parameters cause significant differences between
workloads in threads. For example, searching for a widespread
word in a file is more time-consuming as the word can be dis-
tributed in many rules. For insert, insert in batch function attains
a tremendous acceleration of 180.14 x for its parallelism on the
operation level. As to insert in sequence, it achieves a lower
acceleration of 19.89x due to its narrow file-level parallelism.

Second, in terms of datasets, we find that most operations on
dataset B have low performance. The average speedup for count,
search, and insert on dataset B is 1.88 x, while their performance
on other datasets all attain an average speedup of over 20.0x.
This is due to the file size of the text data. Dataset B has an
average file size of 4.41 KB, which is much smaller than the
file size of the other datasets. In this situation, operations that
specify a particular file need to search through or modify the data
structures within a narrow region, which the CPU is adept at.
Meanwhile, the GPU takes a comparatively great time to invoke
kernel functions for the light-weight tasks. However, even in this
case, our solution still achieves clear performance benefits.

Third, in terms of the query batch size, when the query batch
is relatively low, massive GPU threads do not have enough
workload for parallelism. For example, the average performance
speedup for counting with a batch size of 500 is 6.08 x. In
contrast, the speedup of the count operation reaches 23.93 x with
the query batch size of 10,000. The performance of insertion
shows more variances with different query batch sizes, due to
the enormous time costs for modification accumulating with
massive insert operations.

In terms of mixed operations, we use a batch of 100,000
randomly generated mixed operations to evaluate the perfor-
mance. The experimental result shows that our solution achieves
a speedup of 23.56x on the RTX 3090 platform and a speedup
of 21.79x on the RTX 2080 platform in throughput compared
with the CPU. Although we take extra time in the snapshot
construction and in parsing offsets with the snapshot for opera-
tions, our solution can still obtain clear performance advantages
over the CPU version. We also measure executing the batch in

HU et al.: ENABLING EFFICIENT RANDOM ACCESS TO HIERARCHICALLY COMPRESSED TEXT DATA ON DIVERSE GPU PLATFORMS

TABLE III
SPACE OCCUPANCY OF DIFFERENT DATA STRUCTURES

Storage space (MB) A B C D E
rule2location 374 303 614 11 17623
rule2file 2.3 68 46 0.02 88
word2rule 14 15 43 0.2 378
rootOffset 71 108 342 12 6834

full parallelism while applying locks to operations to ensure
the execution order. In this case, GPU exhibits throughput with
9.68% slow down compared with the CPU, validating that our
offset-snapshot strategy provides an efficient way of avoiding
conflicts between threads and attaining parallelism.

We also compare the GPU insert with the CPU insert with
the same data structure. For random access operation insert in
sequence, we disassemble the insert update into the update to
rootOffset and update to records. The fine-grained update to
rootOffset enables insert in sequence to achieve considerable
speedup against CPU even with file-level parallelism on updat-
ing records. Experiment on dataset A with a number of four files
shows that GPU insert in sequence achieves speedups of 22.83,
43.74, 47.66, 48.00, and 31.45 over the CPU version with the
same data structure on 10, 100, 500, 5000, and 10000 insertions,
respectively.

C. Space

We use the compression ratio of the original data size divided
by the compressed data size as the metric to evaluate space
savings. Our solution achieves a compression ratio of 2.92 on
average. In detail, the compression ratios are 4.32, 1.07, 2.55,
4.84, and 1.80 for datasets A, B, C, D, and E respectively. For
the data structures used in our experiments, bitrmap and records
do not exist until the update happens. Therefore, we exhibit only
space occupancy of data structures of rule2location, rule2file,
word2rule, and rootOffset in Table III. We have the following
observations. First, the data structure rule2location accounts for
most of the space. On average, rule2location occupies 66.29%
space of all data structures. Second, rule2location and rule2file
of dataset B have higher space occupancy ratios than the original
text data size. The reason is that dataset B has much more
files, requiring more space to record information distributed in
different files. Third, the size of the data structure word2rule has
a strong relationship with the vocabulary size. Datasets with a
larger vocabulary size have a larger size of word2rule.

D. Data Structure Generation

Time Savings: We study the time savings in this part. The edge
platform does not show clear benefits in time savings due to its
architectural features of integrated memory. Hence, we report the
time savings of our solution compared to the baseline on discrete
architectures in Fig. 9, and we have the following observations.

First, our parallel GPU-based data structure generation attains
an average time saving of 56.35% on the RTX 3090 platform
and 48.28% on the RTX 2080Ti platform. We can see the
general superiority of RTX 3090 over RTX 2080Ti in terms
of performance.

2711

N RTX 3090 vawi RTX 2080Ti

%:75 i

3NN I R

S
A B C D

Datasets

Fig. 9. Speedups of data generation.

TABLE IV
TIME BREAKDOWN OF DATA STRUCTURE GENERATION IN SECONDS

Time breakdown (s) A B C D E
Data structure allocation 0.11 0.13 0.30 0.018 16.02
Phase 1 traversal 1.80 365 831 0.052 4759
Phase 2 traversal 239 285 119 0.026 4434

Second, the time savings of different datasets grow with the
increment of the data size. Notably, data structure generation
of dataset C, the dataset with the largest number of rules and
vocabulary size, achieves the highest time saving of 72.14% and
72.75% on the two server-grade platforms respectively, proving
the superiority of our GPU-based solution in handling massive
text data.

Third, we find that our solution can bring considerable time
savings in various cases. The time savings of our solution range
from 43.50% to 72.14% on the RTX 3090 platform, and 33.33%
to 72.75% on the RTX 2080Ti platform.

Time Breakdown: We show the detailed time breakdown in
Table IV. On average, the data structure allocation time accounts
for 8.23% of the total data structure generation time. Meanwhile,
the phase 1 traversal occupies an average of 55.99%, and the
phase 2 traversal occupies an average of 35.77%. For small
datasets, the generation time is less than 10 seconds, and for the
largest dataset, the generation time is less than two minutes. The
preprocessing time is roughly equivalent to executing 60,000
inserts per gigabyte of the original text data, but we still regard it
as acceptable because the built data structures are available for all
future queries. Similar scenarios are common in the fields such
as archive collection [50], [51] and record organization [54],
[55].

E. Turnaround Time

We compare the turnaround time of both CPU and GPU on
one query. The result shows that the average comparison ratios of
the turnaround time with GPU to that with CPU are 0.098, 1.567,
1.873, 12.5, and 1.306 for operations count, search, extract,
append, and insert respectively. When measuring the turnaround
time, we assume that all related data structures already exist
in the CPU or GPU and choose 1,000 randomly generated
operations to compute the average time. Notably, for operations
on the GPU, we include the input and output data transmission
time in the turnaround time.

The results show that, in general, the CPU outperforms the
GPU in terms of turnaround time for most operations. This
is because transmitting queries and results between the CPU

2712

—
(2]
—
102)
- . . O
= g
9) K 5 = 102
& CR | (LI
Q 3 I~
=R || £ : ~n 10
8 10" il k =
<] H ; 5 =
S K : 10° 5
9] o ; % 535
> K3 I =4 P
9 2 ElE = 107
< i K] b he o H
&) 100 L 5 B c = H =
~ o O
s o M >
s &
v @)
< K S
< Q X

(b) Bandwidth

Fig. 10. Performance metric analysis.

and GPU takes a non-negligible amount of time, and a single
thread on the GPU has less computational power compared to
the CPU. However, our GPU implementation still attains a very
close absolute turnaround time to the CPU for all operations,
including append, which shows a high time ratio between the
platforms due to the short completion time compared with the
data transmission time. Additionally, GPU also performs well
on queries relating to large scales of the searching range in the
text data as we conduct thread adaptation for complex queries
to parallelize constituent tasks in a single operation, including
count, search, and insert.

F. Hardware Metrics

We further measure the hardware metrics of our so-
lution, including achieved occupancy, bandwidth utiliza-
tion, SM efficiency, and cycle instruction, utilizing the tool
NsightComputeC LI provided by Nvidia [80]. Achieved oc-
cupancy reflects the parallelism. Bandwidth utilization shows
the bandwidth utilization of different operations. SM efficiency
represents the efficiency. Warp instruction illustrates the load dif-
ferences between different operations. Cycle instruction shows
the instruction-level parallelism. We use the GTX 3090 plat-
form for illustration, and the other platforms exhibit similar
performance behavior. Besides, we use the Jetson AGX Xavier
platform to illustrate the benefits of adaptation to edge GPU.

Achieved Occupancy: The achieved occupancy represents the
rate of active warps to the maximum number of warps during
kernel processing. We measure the achieved occupancy of our
two-phase traversal, and show the results in Fig. 10(a). The first
phase traversal has an average of 71.87% achieved occupancy,
whereas the second phase traversal attains an average of 69.67%
achieved occupancy. The average achieved occupancy of the
two-phase traversal is about 70%. The result shows that the
achieved occupancy of the first phase slightly transcends that
of the second phase. It is due to that the first phase separates the
whole traversal into levels, balancing workloads among threads.
Considering the fact that the DAG is unbalanced, we believe that
the achieved occupancy of this implementation is sufficient to
demonstrate the effectiveness and applicability of our traversal
strategy.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

S L g
~ 100 w9 © 107
¢ o 10

° 19 9 o=

2 80 Ngg 504 8 5

e NI & 2
o 60 g 203 2]
® N @ e i
o 3 0.2 % K]
S 40 N & o K
£ NE B =B 9
20 N4 Soa b
[J] \ K3 =] R =] [
2 N Eo, 5 B
= %] . w

O &~ < X &0 < >
< s §SELEF &

¢ g FL LS ¢
N U (/)Q; «-/\- QN <S
X X
fficiency (b) Cycle instruction instruction

Fig. 11. Efficiency and parallelism metric analysis.

Bandwidth Utilization: We show the bandwidth utilization in
Fig. 10(b). As shown in Fig. 10(b), the bandwidth utilization
between random access operations and datasets is varied. Oper-
ations involving updates to data structures, such as append and
insert, exhibit high bandwidth utilization of 422.61 GB/s and
263.84 GB/s on average. Although count and search operations
have comparatively lower average bandwidth utilization, they
nevertheless provide significant performance improvements. In
terms of datasets, our solution also exhibits bandwidth utilization
variance among different datasets. Except for the operations of
append and insert in the batch level that concern little about
the file size, the bandwidth utilization is lower in datasets with
smaller file sizes, and higher in datasets with larger files.

SM Efficiency: SM efficiency is the percentage of time a
streaming multiprocessor (SM) has at least one warp working.
We measure the metric of the five random access operations,
and show the results in Fig. 11(a). In general, the five operations
achieve an average of 80.8% efficiency, with the efficiency of
operations extract, append, and insert exceeding or close to 90%.

Cycle Instruction: Cycle instruction represents the average
number of instructions executed in each cycle. The cycle instruc-
tion of each random access operation is displayed in Fig. 11(b).
Cycle instruction of insert is higher than all the other opera-
tions, because it frequently accesses data structures including
rule2location and rootOffset. In contrast, append has a rather
small number of instructions per cycle, because it mainly in-
volves simple data copy operations.

Warp Instruction: Warp instruction represents the average
number of instructions each warp executes. As shown in
Fig. 11(c), warp instruction of random access operations illus-
trates considerable variation between different operations. In
detail, the warp instruction of append operation is only 54.9
because of its lightweight processing workload, while other
operations, such as search, extract, and insert, have relatively
high values for the complexity of the procedure.

Adaptation to Edge GPU: We analyze the zero-copy edge
optimizations discussed in Section V-B. In detail, we evaluate
our solution between the usage of cudaMalloc() and cudaMal-
locManaged(). By using cudaMallocManaged() on Jetson AGX
Xavier, we avoid the data transfer through PCle and two dupli-
cate data allocations in memory. We evaluate the five operations
on different datasets. Due to the intensive data transmission
between different nodes of the DAG and computation during
the DAG traversal in processing, the data transfer time does not
dominate the end-to-end performance. However, we do have

HU et al.: ENABLING EFFICIENT RANDOM ACCESS TO HIERARCHICALLY COMPRESSED TEXT DATA ON DIVERSE GPU PLATFORMS

RTX 3090 B RTX 2080Ti EEEE Jetson

X
5
i
% o
<
: :
% 5
o

10 i =i i [] &
_E Count Search Extract Append Insert

Fig. 12. Performance comparison.

great improvement in space savings because edge architecture
provides a unified memory that can share the whole memory by
using cudaMallocManaged(). In our design, with cudaMalloc-
Managed(), we put rootOffset, rule2location, word2rule, and
records into the global unified memory, and put small data
structures like bitmap into both shared and unified memory, thus
achieving a 43% memory saving compared to using cudaMal-
loc() alone.

G. Comparison With Different GPU Platforms

In this part, we compare the server-grade GPU platform and
the edge-grade GPU platform from diverse perspectives.

Average Performance: We exhibit the performance compar-
ison between different platforms in Fig. 12. Fig. 12 shows
that the server-grade GPU platforms perform better than the
edge-grade GPU platform. The reason is that the server-grade
platforms have higher hardware configurations. For example,
the RTX 3090 GPU has 10,482 cores with 1,395 MHz, while
the Jetson AGX Xavier has only 512 cores with 854 MHz.
Moreover, the server-grade GPU adopts discrete memory, which
has much higher memory bandwidth than the edge-grade GPU.
As for the detailed operations, their performance trends are
also similar. For example, the append operation can achieve the
highest performance on both the server-grade platform and the
edge-grade platform. The reason is that it can perform in full
parallelism.

Power Efficiency: We next study the power efficiency of our
solution on these platforms. Energy consumption is a common
concern in edge application scenarios, and we use performance
per power ratio, shorten as ppw_ratio to represent the power
efficiency, denoted in (9).

average per formance

ppw_ratio = per formance power of whole process

In detail, the average performance in (9) stands for the average
performance of throughput for all datasets with the five random
access operations. Meanwhile, to profile the power consump-
tion, we use related analysis tools on different platforms. On the
Jetson platform, we use the Nvidia official tool, tegrastats, to
report power usage. On server GPU platforms like RTX 3090
and RTX 2080Ti, we measure the GPU power consumption
using nvidia-smi while measuring the CPU power consumption
using s-fui. In our measurement, the edge-grade GPU platform
achieves the highest power efficiency, which is 2.07x and
2.28x over those of the RTX 3090 and RTX 2080 Ti GPU
platforms, respectively. This implies that the high performance

2713

of server-grade platforms is usually accompanied by high energy
consumption, so they are not suitable for low-power application
scenarios.

Cost Effectiveness: Besides power efficiency, cost effective-
ness is another important factor we consider in HPC systems.
We use performance per price ratio, shorten as ppc_ratio, to
represent the cost effectiveness, denoted as (10).

average per formance

ppc_ratio = (10)

price of the plat form

The price information is found on the Amazon official web-
site [81], [82] and other authoritative websites [83]. The average
performance is the same as in power efficiency. In our exper-
iments, the server-grade GPU platforms achieve better cost-
effectiveness than the edge-grade platform. The result shows
that RTX 3090 achieves 2.3x cost effectiveness, while RTX
2080Ti achieves 2.41x cost effectiveness over Jetson AGX
Xavier. That is, the server-grade GPU platforms reach 2.36x
cost effectiveness over the edge GPU platform on average.

H. Comparison With the State-of-the-Art

We further evaluate our work by making comparisons with
the state-of-the-art works, including G-TADOC and the current
solution to perform mixed random access operations.

Comparison With G-TADOC: The original G-TADOC [8]
mainly targets data analytics tasks that require a full range
scan without considering the locality. To process random access
operations, G-TADOC has to scan the entire data with a BFS-
based traversal method, which is time-consuming. In contrast,
our solution sets up index data structures, such as word2rule
and rule2location, for efficient random access operations, which
can help minimize data accesses. To evaluate the locality of our
solution, we compare the size of data accessed by a random
access operation with the original size of the compressed data.
We conclude that one operation accesses data only about an
average of 3.43%,, the size of the compressed data. The specific
data access ratios range from 0.0002%, to 17.02%,. In detail,
search accesses the most amount of data, while the data amount
accessed by append is at the lowest level. To demonstrate the
efficiency of our solution, we compare our solution with G-
TADOC, in which we perform count for 20,000 random words
ondatasets A, B, C, D, and E, and our solution achieves 5325.9 x,
296310.1x, 2349.2x, 22205.2x, and 50859.2x performance
speedups, respectively.

Comparison With the Mixed-Operation Solution: The stud-
ies [52], [84] show that for webpages, searching or counting
specific words, and extracting certain content are common op-
erations in real-world Web search. Moreover, as new web pages
are continuously produced every day, the latest pages could need
to be appended to the existing stored datasets. The research [30]
also discusses this situation. In such cases, we use the real-world
Wikipedia dataset and conduct mixed random access operations
of 20,000 extract, 20,000 search, 20,000 count, 20,000 insert,
and 20,000 append for evaluation. Compared to the operations
without GPU [30], our solution achieves 22.39x speedup in
terms of throughput.

2714

1. Applicability

As discussed in Section III-A, our solution targets high-
throughput text random accesses, and can provide extremely
high throughput for random accesses to compressed data on
GPU. Analytics systems that deal with static data, such as
news [49], legal affairs [50], [S1], webpages [52], [53], medical
records [54], [55], and logs [56], all have such needs, and our
solution can use only a GPU machine to meet the task volume
that needs to be done by several servers in the past. Our solution
handles the same input as previous works [7], [8], [28], [29],
[30], so other tasks analyzing hierarchically compressed data
can also be performed under our framework.

In terms of real-world applications, our work helps to handle
heavy-load occasions such as the online analytical processing
system that supports text analytics operations and insertion, and
users are able to upload their text files to operate on. When
queries from users come in a low-load manner, the system can
handle the queries with only the CPU as discussed in the previous
work [30] to achieve less turnaround time. On occasions that
large amounts of queries arrive within a short time, GPU can
be put to work to attain an overall high performance. This
type of CPU-GPU collaboration design has been widely applied
in OLAP systems. For example, the study [85] introduces a
scheduling strategy that helps to balance the task load between
CPU and GPU to achieve the optimal task completion time in
the OLAP system. To align with the requirements of the text
analytics system, our solution first executes the compression to
transform text data from users into TADOC form and stores it
in the CPU memory. It then loads the compressed data to GPU
memory only when needed. Specifically, for datasets that are
larger than the GPU memory capacity, we would keep them in
the CPU memory and perform operations by loading the text
data to GPU memory for processing part by part.

VII. RELATED WORK

Data Analytics on Compression: Plenty of works have been
proposed for text analytics directly on compressed data [7],
[8], [28], [29], [30], [32], [86]. The closest work to ours is the
study [30], which enables efficient random access to TADOC-
compressed data on CPU. However, because this work lacks
fine-grained large-scale thread parallelism, it cannot be executed
on GPUs. TADOC [29] is a novel design for text analytics
that runs directly on compression in both single-node and dis-
tributed environments. Following that, Zhang et al. [7] applied
TADOC as the storage structure to support advanced document
analytics. Succint [87] is a novel data store enabling efficient
queries directly on the compressed data, and has been applied to
other scenarios [88], [89]. Recently, Zhang et al. [8] developed
G-TADOC, which enables TADOC on GPUs. However, it does
not support random access operations. Our work compensates
for the lack of supporting random access on GPU.

Data Processing on GPU: GPUs have been widely used in
data science applications. For example, Hu et al. [90] accelerated
triangle counting on GPU. Paul et al. [91] explored scalable
join on multi-GPU systems. Li et al. [92] developed dynamic
Hash tables on GPUs. Floratos et al. [93] studied nested query

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

processing on GPU. Peng et al. [94] developed GPU-based
sequence indexing. Rui et al. [95] proposed large table join with
multi-GPUs. Li et al. [96] built a CPU-GPU hybrid database
product. MapD [36] is a novel GPU-powered database engine,
which can provide efficient query processing utilizing massive
GPU cores. Gunrock [97] is a novel GPU-based graph analytics
framework. For huge graphs, multi-GPU can be applied [98].
SABER [39] is a hybrid CPU-GPU stream processing en-
gine that can handle relational stream queries. Furthermore,
FineStream [38], [99] is developed to enable efficient window-
based stream processing on CPU-GPU integrated architectures.
Edge-Grade GPU Computing: Edge-grade GPUs are becom-
ing increasingly popular in recent days, due to their attractive
features such as power efficiency [100], [101]. Edge GPUs have
been applied in diverse applications. For example, Jose et al. [14]
used Nvidia Jetson TX2 edge GPU to develop a surveillance
system. Amert et al. [102] studied the Nvidia TX2 edge GPU
in autonomous-driving systems. Rungsuptaweekoon et al. [103]
demonstrated the power efficiency of edge GPU in inference.
Lee et al. [104] used the edge GPU for car plate recognition.
Davidson et al. [105] applied embedded GPU to process images
for space applications. Different from these works, we study
compressed data analytics on edge-grade GPU platforms.

VIII. CONCLUSION

This paper presents our optimization of enabling GPU-based
random access to hierarchically-compressed data, which is the
first to develop efficient random access operations on the GPU
without decompression. We unveil the challenges and difficulties
of enabling random access on GPU, and develop a set of novel
designs to address them, including data structure architecture,
data structure parallel generation, and random access operations.
Our solution attains an average speedup of 52.98 x in operation
acceleration, and 56.35% time saving in data structure genera-
tion. Moreover, our solution achieves an average compression
ratio of 2.92 in space.

REFERENCES

[1] T. Allen et al., “In-depth analyses of unified virtual memory system
for GPU accelerated computing,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., St. Louis, MO, USA, Nov. 14-19, 2021,
pp. 64:1-64:15.

[2] J. Kosaian et al., “Arithmetic-intensity-guided fault tolerance for neu-
ral network inference on GPUs,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., St. Louis, MO, USA, Nov. 14-19, 2021,
pp. 79:1-79:15.

[3] L. Sakiotis et al., “PAGANI: A parallel adaptive GPU algorithm for
numerical integration,” in Proc. Int. Conf. High Perform. Comput. Netw.
Storage Anal., St. Louis, MO, USA, Nov. 14-19, 2021, pp. 83:1-83:13.

[4] F. Knorr et al., “ndzip-gpu: Efficient lossless compression of scien-
tific floating-point data on GPUs,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., St. Louis, MO, USA, Nov. 14-19, 2021,
pp. 93:1-93:14.

[5] K. Ranganath et al., “MAPA: Multi-accelerator pattern allocation pol-
icy for multi-tenant GPU servers,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., St. Louis, MO, USA, Nov. 14-19, 2021,
pp. 99:1-99:14.

[6] Z. Bian et al., “Online evolutionary batch size orchestration for schedul-
ing deep learning workloads in GPU clusters,” in Proc. Int. Conf. High
Perform. Comput. Netw. Storage Anal., St. Louis, MO, USA, Nov. 14-19,
2021, pp. 100:1-100:15.

HU et al.: ENABLING EFFICIENT RANDOM ACCESS TO HIERARCHICALLY COMPRESSED TEXT DATA ON DIVERSE GPU PLATFORMS

(71
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

F. Zhang et al., “TADOC: Text analytics directly on compression,” VLDB
J., vol. 30, no. 2, pp. 163-188, 2021.

F. Zhang et al., “G-TADOC: Enabling efficient GPU-based text analytics
without decompression,” in Proc. IEEE Int. Conf. Data Eng., 2021,
pp. 1679-1690.

Z. Pan et al., “Exploring data analytics without decompression on em-
bedded GPU systems,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 7,
pp. 1553-1568, Jul. 2022.

Y. Kortli et al., “Deep embedded hybrid CNN-LSTM network for lane
detection on NVIDIA Jetson Xavier NX,” Knowl.-Based Syst., vol. 240,
2022, Art. no. 107941.

H.-H. Nguyen, D. N.-N. Tran, and J. W. Jeon, “Towards real-time vehicle
detection on edge devices with NVIDIA Jetson TX2,” in Proc. IEEE Int.
Conf. Consum. Electron.-Asia, 2020, pp. 1-4.

Z. Qiang, W. Yuanyu, Z. Liang, Z. Jin, L. Yu, and L. Dandan, “Research
on real-time reasoning based on Jetson TX2 heterogeneous acceleration
YOLOV4,” in Proc. IEEE 6th Int. Conf. Cloud Comput. Big Data Ana-
Iytics, 2021, pp. 455-459.

A. Wong, M. Famuori, M. J. Shafiee, F. Li, B. Chwyl, and J. Chung,
“YOLO Nano: A highly compact you only look once convolutional neural
network for object detection,” in Proc. 5th Workshop Energy Efficient
Mach. Learn. Cogn. Comput.-NeurIPS Ed., 2019, pp. 22-25.

E. Jose, G. M., M. T. P. Haridas, and M. H. Supriya, “Face recognition
based surveillance system using FaceNet and MTCNN on Jetson TX2,”
in Proc. 5th Int. Conf. Adv. Comput. Commun. Syst., 2019, pp. 608-613.
V. Sati et al., “Face detection and recognition, face emotion recognition
through NVIDIA Jetson Nano,” in Proc. 11th Int. Symp. Ambient Intell.
Ambient Intell.—Softw. Appl., Springer, 2021, pp. 177-185.

W. Vijitkunsawat and P. Chantngarm, “Comparison of machine learning
algorithm’s on self-driving car navigation using NVIDIA Jetson Nano,”
in Proc. 17th Int. Conf. Elect. Eng./Electron. Comput. Telecommun. Inf.
Technol., 2020, pp. 201-204.

P. Grzesik et al., “Metagenomic analysis at the edge with Jetson Xavier
NX.,” in Proc. 21st Int. Conf. Comput. Sci., Springer, Krakow, Poland,
Jun. 1618, 2021, pp. 500-511.

Z.-D. Zhang et al., “CDNet: A real-time and robust crosswalk detection
network on Jetson nano based on YOLOVS,” Neural Comput. Appl.,
vol. 34, no. 13, pp. 10 719-10 730, 2022.

M. I. Uddin, M. S. Alamgir, M. M. Rahman, M. S. Bhuiyan, and M. A.
Moral, “Al traffic control system based on deepstream and IoT using
NVIDIA Jetson nano,” in Proc. 2nd Int. Conf. Robot. Elect. Signal
Process. Techn., 2021, pp. 115-119.

Y. Wu, “Cloud-edge orchestration for the Internet of Things: Architecture
and Al-powered data processing,” IEEE Internet of Things J., vol. 8,
no. 16, pp. 12 792-12 805, Aug. 2021.

G. Li et al., “Data processing delay optimization in mobile edge comput-
ing,” Wireless Commun. Mobile Comput., vol. 2018, pp. 1-9, 2018.

J. Koo et al., “Fine-grained data processing framework for heterogeneous
IoT devices in sub-aquatic edge computing environment,” Wireless Pers.
Commun., vol. 116, pp. 1407-1422, 2021.

J. C. Kieffer, “A tutorial on hierarchical lossless data compression,” in
Modeling Uncertainty. Berlin, Germany: Springer, 2002, pp. 711-733.
C. G. Nevill-Manning, “Inferring sequential structure,” PhD dissertation,
Univ. Waikato, Hamilton, New Zealand, 1996.

C. G. Nevill-Manning and I. H. Witten, “Compression and explanation
using hierarchical grammars,” Comput. J., vol. 40, no. 2/3, pp. 103-116,
Jan. 1997.

C. G. Nevill-Manning et al., “Identifying hierarchical structure in se-
quences: A linear-time algorithm,” J. Artif. Intell. Res., vol. 7, pp. 67-82,
1997.

C. G. Nevill-Manning and I. H. Witten, “Linear-time, incremental hierar-
chy inference for compression,” in Proc. Data Compression Conf., 1997,
pp. 3—-11.

F. Zhang et al., “Zwift: A programming framework for high performance
text analytics on compressed data,” in Proc. Int. Conf. Supercomputing,
2018, pp. 195-206.

F. Zhang et al., “Efficient document analytics on compressed data:
Method, challenges, algorithms, insights,” in Proc. VLDB Endowment,
vol. 11, no. 11, pp. 15221535, 2018.

F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “Enabling efficient
random access to hierarchically-compressed data,” in Proc. IEEE Int.
Conf. Data Eng., 2020, pp. 1069-1080.

F. Zhang et al., “Optimizing random access to hierarchically-compressed
data on GPU,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2022, Art. no. 18.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]
[56]
[57]

[58]

[59]

2715

F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “POCLib: A high-
performance framework for enabling near orthogonal processing on com-
pression,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 2, pp. 459-475,
Feb. 2022.

F. Zhang et al., “CompressDB: Enabling efficient compressed data direct
processing for various databases,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2022, pp. 1655-1669.

F. Zhang, J. Zhai, B. He, S. Zhang, and W. Chen, “Understanding co-
running behaviors on integrated CPU/GPU architectures,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 3, pp. 905-918, Mar. 2017.

F. Zhang, Z. Chen, C. Zhang, A. C. Zhou, J. Zhai, and X. Du, “An
efficient parallel secure machine learning framework on GPUs,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 9, pp. 2262-2276, Sep. 2021.
C. Root et al., “MapD: A GPU-powered big data analytics and visualiza-
tion platform,” in Proc. ACM SIGGRAPH Talks, 2016, pp. 1-2.

Y. Yuan, M. F. Salmi, Y. Huai, K. Wang, R. Lee, and X. Zhang, “Spark-
GPU: An accelerated in-memory data processing engine on clusters,” in
Proc. IEEE Int. Conf. Big Data, 2016, pp. 273-283.

F. Zhang et al., “FineStream: Fine-grained window-based stream pro-
cessing on CPU-GPU integrated architectures,” in Proc. USENIX Conf.
Usenix Annu. Tech. Conf., 2020, pp. 633-647.

A.Koliousisetal., “SABER: Window-based hybrid stream processing for
heterogeneous architectures,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2016, pp. 555-569.

A. Shanbhag etal., “Tile-based lightweight integer compression in GPU,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2022, pp. 1390-1403.
C. Chai et al., “Selective data acquisition in the wild for model charging,”
in Proc. VLDB Endowment, vol. 15, no. 7, pp. 1466-1478, 2022.

C. Chai, J. Wang, Y. Luo, Z. Niu, and G. Li, “Data management for
machine learning: A survey,” IEEE Trans. Knowl. Data Eng., vol. 35,
no. 5, pp. 4646-4667, May 2023.

I. Buck, “GPU computing with NVIDIA CUDA,” in Proc. ACM SIG-
GRAPH Courses, 2007, pp. 6-es.

J. Sanders et al., CUDA by Example: An Introduction to General-Purpose
GPU Programming. Reading, MA, USA: Addison-Wesley Professional,
2010.

C. Arcila-Calderon et al., “Big data techniques: Large-scale text analysis
for scientific and journalistic research,” Profesional de la Informacion,
vol. 25, pp. 623-631, 2016.

M. Chowkwanyun, “Big data, large-scale text analysis, and public health
research,” Amer. J. Public Health, vol. 109, pp. S126-S127, 2019.

Q. Yin et al., “An adaptive elastic multi-model big data analysis and
information extraction system,” Data Sci. Eng., vol. 7, no. 4, pp. 328-338,
2022.

K. Atasu et al., “Hardware-accelerated regular expression matching for
high-throughput text analytics,” in Proc. Int. Conf. Field Programmable
Log. Appl., 2013, pp. 1-7.

B. Zhao and S. Vogel, “Adaptive parallel sentences mining from web
bilingual news collection,” in Proc. IEEE Int. Conf. Data Mining, 2002,
pp. 745-748.

A. B. Bepko, “Public availability or practical obscurity: The debate over
public access to court records on the internet,” New York Law Sch. Law
Rev., vol. 49, 2004, Art. no. 967.

P. A. Winn, “Online court records: Balancing judicial accountability
and privacy in an age of electronic information,” Washington Law Rev.,
vol. 79, 2004, Art. no. 307.

S. Bao et al., “Method and apparatus for enhancing webpage browsing,”
U.S. Patent 8 577 900, Nov. 05, 2013.

S. Lawrence and C. L. Giles, “Context and page analysis for im-
proved Web search,” IEEE Internet Comput., vol. 2, no. 4, pp. 38-46,
Jul./Aug. 1998.

W. Raghupathi et al., “Big data analytics in healthcare: Promise and
potential,” Health Inf. Sci. Syst., vol. 2, 2014, Art. no. 3.

R.H. Milleretal., “Physicians’ use of electronic medical records: Barriers
and solutions,” Health Affairs, vol. 23, pp. 116-126, 2004.

B. Zhang et al., “The cloud is not enough: Saving IoT from the cloud,” in
Proc. 7th USENIX Conf. Hot Topics Cloud Comput., 2015, Art. no. 21.
D.Merrill etal., “Scalable GPU graph traversal,” ACM SIGPLAN Notices,
vol. 47, no. 8, pp. 117-128, 2012.

P. Harish et al., “Accelerating large graph algorithms on the GPU using
CUDA,” in Proc. Int. Conf. High-Perform. Comput., Springer, 2007,
pp. 197-208.

S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph ex-
ploration on multi-core CPU and GPU,” in Proc. Int. Conf. Parallel
Architectures Compilation Techn., 2011, pp. 78-88.

2716

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]
[69]

[70]

(711

[72]

(73]

[74]1

[75]

[76]
[(77]

[78]
[79]

[80]

[81]

[82]

[83]

[84]

[85]
[86]
[87]

[88]

[89]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

Y. Jia et al., “Edge v. node parallelism for graph centrality metrics,”
in GPU Computing Gems Jade Edition. Amsterdam, The Netherlands:
Elsevier, 2012, pp. 15-28.

H. Liuetal., “Enterprise: Breadth-first graph traversal on GPUs,” in Proc.
Int. Conf. High Perform. Comput. Netw. Storage Anal., 2015, pp. 1-12.
E. Z. Zhang et al., “On-the-fly elimination of dynamic irregularities for
GPU computing,” ACM SIGPLAN Notices, vol. 46, no. 3, pp. 369-380,
2011.

B. Wu, E. Z. Zhang, and X. Shen, “Enhancing data locality for dynamic
simulations through asynchronous data transformations and adaptive
control,” in Proc. Int. Conf. Parallel Architectures Compilation Techn.,
2011, pp. 243-252.

M. Garland et al., “Parallel computing experiences with CUDA,” IEEE
Micro, vol. 28, no. 4, pp. 13-27, Jul./Aug. 2008.

H. Zhou et al., “Accelerating large scale real-time GNN inference using
channel pruning,” 2021, arXiv:2105.04528.

Y.Zhangetal., “Distributed deep learning on data systems: A comparative
analysis of approaches,” in Proc. VLDB Endowment, vol. 14, no. 10,
pp. 1769-1782, 2021.

N. M. Kumar et al., “Distributed energy resources and the application of
Al ToT, and blockchain in smart grids,” Energies, vol. 13, no. 21, 2020,
Art. no. 5739.

0. Debauche et al., “A new edge architecture for AI-IoT services deploy-
ment,” Procedia Comput. Sci., vol. 175, pp. 10-19, 2020.

A. Koliousis et al., “Crossbow: Scaling deep learning with small batch
sizes on multi-GPU servers,” 2019, arXiv: 1901.02244.

K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim, “Internet
of Things (IoT) for next-generation smart systems: A review of current
challenges, future trends and prospects for emerging SG-IoT scenarios,”
IEEE Access, vol. 8, pp. 23 022-23 040, 2020.

Jetson-AGX-Xavier, 2022. [Online]. Available: https://www.nvidia.com/
en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
Volta-architecture-whitepaper, 2017. [Online]. Available: https:
/limages.nvidia.com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf

NVIDIA Jetson AGX Xavier Delivers 32 TeraOps for New Era of Al in
Robotics, 2018. [Online]. Available: https://developer.nvidia.com/blog/
nvidia-jetson-agx-xavier-32-teraops-ai-robotics/

GeForce-rtx-3090, 2020. [Online]. Available: https://www.techpowerup.
com/gpu-specs/geforce-rtx-3090.c3622

Architecture-Whitepaper-V 1, 2017. [Online]. Available: https://images.
nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-
ampere-GA102-GPU- Architecture- Whitepaper- V1.pdf

Wikipedia HTML data dumps, 2017. [Online]. Available: https://dumps.
wikimedia.org/enwiki/

M. Lichman, “UCI machine learning repository,” 2013. [Online]. Avail-
able: http://archive.ics.uci.edu/ml

DBLP, 2020. [Online]. Available: https://dblp.uni-trier.de/xml/
COVID-19 data from yelp open dataset, 2019. [Online]. Available: https:
/Iwww.yelp.com/dataset

Nsight compute command line interface, 2019. [Online]. Available: https:
//docs.nvidia.com/nsight-compute/2019.1/pdf/NsightComputeCli.pdf
NVIDIA RTX 3090 Price, 2023. [Online]. Available: https:
/Iwww.amazon.com/ZOTAC-Graphics-IceStorm- Advanced-ZT-
A30900J-10P/dp/BO8ZL6XDI9H/

NVIDIA RTX 2080Ti Price, 2023. [Online]. Available: https://www.
amazon.com/MSI-GAMING-RTX-2080-TRIO/dp/BO7THWW7NCW/
?th=1

NVIDIA Jetson AGX Xavier Price, 2023. [Online]. Available: https:/
elinux.org/Jetson_ AGX_Xavier

S. Lawrence and C. L. Giles, “Context and page analysis for im-
proved web search,” IEEE Internet Comput., vol. 2, no. 4, pp. 38-46,
Jul./Aug. 1998.

L. Riha et al., “Task scheduling for GPU accelerated OLAP systems,” in
Proc. Conf. Center Adv. Stud. Collaborative Res., 2011, pp. 107-119.

P. Boncz et al., “FSST: Fast random access string compression,” in Proc.
VLDB Endowment, vol. 13, no. 12, pp. 2649-2661, 2020.

R. Agarwal et al., “Succinct: Enabling queries on compressed data,” in
Proc. USENIX Conf. Netw. Syst. Des. Implementation,2015, pp. 337-350.
A. Khandelwal et al., “BlowFish: Dynamic storage-performance tradeoff
in data stores,” in Proc. USENIX Conf. Netw. Syst. Des. Implementation,
2016, pp. 485-500.

A. Khandelwal et al., “ZipG: A memory-efficient graph store for inter-
active queries,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2017,
pp. 1149-1164.

[90]

[91]

[92]
[93]
[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

L. Hu et al., “Accelerating triangle counting on GPU,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2021, pp. 736-748.

J. Paul etal., “MG-Join: A scalable join for massively parallel multi-GPU
architectures,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2021,
pp. 1413-1425.

Y. Li, Q. Zhu, Z. Lyu, Z. Huang, and J. Sun, “DyCuckoo: Dynamic hash
tables on GPUs,” in Proc. IEEE Int. Conf. Data Eng., 2021, pp. 744-755.
S. Floratos et al., “NestGPU: Nested query processing on GPU,” in Proc.
IEEE Int. Conf. Data Eng., 2021, pp. 1008-1019.

B. Peng, P. Fatourou, and T. Palpanas, “SING: Sequence indexing using
GPUs,” in Proc. IEEE Int. Conf. Data Eng., 2021, pp. 1883-1888.

R. Rui et al., “Efficient join algorithms for large database tables in a
multi-GPU environment,” in Proc. VLDB Endowment, vol. 14, no. 4,
pp. 708-720, 2020.

R. Lee et al., “The art of balance: A RateupDB experience of building a
CPU/GPU hybrid database product,” in Proc. VLDB Endowment, vol. 14,
no. 12, pp. 2999-3013, 2021.

Y. Wang et al., “Gunrock: GPU graph analytics,” ACM Trans. Parallel
Comput., vol. 4, 2017, Art. no. 3.

Y. Pan, Y. Wang, Y. Wu, C. Yang, and J. D. Owens, “Multi-GPU graph
analytics,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2017,
pp. 479-490.

F. Zhang et al., “Fine-grained multi-query stream processing on inte-
grated architectures,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 9,
pp- 2303-2320, Sep. 2021.

S. Mittal, “A survey on optimized implementation of deep learning
models on the NVIDIA Jetson platform,” J. Syst. Architecture, vol. 97,
pp. 428-442, 2019.

Y. Ukidave, D. Kaeli, U. Gupta, and K. Keville, “Performance of the
NVIDIA Jetson TK1 in HPC,” in Proc. IEEE Int. Conf. Cluster Comput.,
2015, pp. 533-534.

T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith, “GPU
scheduling on the NVIDIA TX2: Hidden details revealed,” in Proc. IEEE
Real-Time Syst. Symp., 2017, pp. 104-115.

K. Rungsuptaweekoon, V. Visoottiviseth, and R. Takano, “Evaluating the
power efficiency of deep learning inference on embedded GPU systems,”
in Proc. Int. Conf. Inf. Technol., 2017, pp. 1-5.

S. Lee, K. Son, H. Kim, and J. Park, “Car plate recognition based on
CNN using embedded system with GPU,” in Proc. 10th Int. Conf. Hum.
Syst. Interact., 2017, pp. 239-241.

R. L. Davidson and C. P. Bridges, “Error resilient GPU accelerated image
processing for space applications,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 9, pp. 1990-2003, Sep. 2018.

Yihua Hu is a research assistant with the Key Labora-
tory of Data Engineering and Knowledge Engineering
(MOE), Renmin University of China. She joined the
Key Laboratory of Data Engineering and Knowledge
Engineering (MOE) in 2020. Her major research in-
terests include parallel and distributed systems.

Feng Zhang received the bachelor’s degree from
Xidian University, in 2012, and the PhD degree in
computer science from Tsinghua University, in 2017.
He is an associate professor with DEKE Lab and
School of Information, Renmin University of China.
His major research interests include database sys-
tems, and parallel and distributed systems.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on January 08,2024 at 04:18:42 UTC from IEEE Xplore. Restrictions apply.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://developer.nvidia.com/blog/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/
https://developer.nvidia.com/blog/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/
https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622
https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/enwiki/
http://archive.ics.uci.edu/ml
https://dblp.uni-trier.de/xml/
https://www.yelp.com/dataset
https://www.yelp.com/dataset
https://docs.nvidia.com/nsight-compute/2019.1/pdf/NsightComputeCli.pdf
https://docs.nvidia.com/nsight-compute/2019.1/pdf/NsightComputeCli.pdf
https://www.amazon.com/ZOTAC-Graphics-IceStorm-Advanced-ZT-A30900J-10P/dp/B08ZL6XD9H/
https://www.amazon.com/ZOTAC-Graphics-IceStorm-Advanced-ZT-A30900J-10P/dp/B08ZL6XD9H/
https://www.amazon.com/ZOTAC-Graphics-IceStorm-Advanced-ZT-A30900J-10P/dp/B08ZL6XD9H/
https://www.amazon.com/MSI-GAMING-RTX-2080-TRIO/dp/B07HWW7NCW/{?}th=1
https://www.amazon.com/MSI-GAMING-RTX-2080-TRIO/dp/B07HWW7NCW/{?}th=1
https://www.amazon.com/MSI-GAMING-RTX-2080-TRIO/dp/B07HWW7NCW/{?}th=1
https://elinux.org/Jetson_AGX_Xavier
https://elinux.org/Jetson_AGX_Xavier

Yifei Xia is a research assistant with the Key Labora-
tory of Data Engineering and Knowledge Engineering
(MOE), Renmin University of China. He joined the
Key Laboratory of Data Engineering and Knowledge
Engineering (MOE) in 2020. His major research in-
terests include parallel and distributed systems.

Zhiming Yao is a research assistant with the Key
Laboratory of Data Engineering and Knowledge En-
gineering (MOE), Renmin University of China. He
joined the Key Laboratory of Data Engineering and
Knowledge Engineering (MOE) in 2019. His ma-
jor research interests include parallel and distributed
systems.

Letian Zeng is a research assistant with the Key
Laboratory of Data Engineering and Knowledge En-
gineering (MOE), Renmin University of China. He
joined the Key Laboratory of Data Engineering and
Knowledge Engineering (MOE) in 2019. His major
research interests include distributed systems.

Haipeng Ding received the bachelor’s degree from
the Renmin University of China, in 2022. He is a
research assistant with the Key Laboratory of Data
Engineering and Knowledge Engineering (MOE),
Renmin University of China. He joined the Key Lab-
oratory of Data Engineering and Knowledge Engi-
neering (MOE) in 2020. His major research interests
include parallel and distributed systems and machine
learning.

Zhewei Wei received the PhD degree in computer
science and engineering from the Hong Kong Uni-
versity of Science and Technology. He is currently a
professor with the Renmin University of China. His
research interests include algorithms for massive data,
streaming algorithms, and graph algorithms.

HU et al.: ENABLING EFFICIENT RANDOM ACCESS TO HIERARCHICALLY COMPRESSED TEXT DATA ON DIVERSE GPU PLATFORMS 2717

Xiao Zhang received the master’s degree in computer
science and technology from Renmin University, in
1998, and the PhD degree in computer science and
technology from the Institute of Computing Technol-
ogy, Chinese Academy of Science, in 2001. He is
a professor with the School of Information, Renmin
University of China. His research interests include
database architecture and Big Data management
systems.

Jidong Zhai received the BS degree in computer
science from the University of Electronic Science and
Technology of China, in 2003, and the PhD degree in
computer science from Tsinghua University, in 2010.
He is an associate professor with the Department of
Computer Science and Technology, Tsinghua Univer-
sity. His research interests include performance eval-
uation for high performance computers, performance
analysis, and modeling of parallel applications.

Xiaoyong Du received the BS degree from Hangzhou
University, Zhejiang, China, in 1983, the ME degree
from the Renmin University of China, Beijing, China,
in 1988, and the PhD degree from the Nagoya Insti-
tute of Technology, Nagoya, Japan, in 1997. He is
currently a professor with the School of Information,
Renmin University of China. His current research in-
terests include databases and intelligent information
retrieval.

Siqi Ma received the PhD degree from Singapore
Management University. She is with the School of
Engineering and Information Technology, University
of New South Wales, Australia. Her research interests
include mobile security, IoT security, and software
engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

