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ABSTRACT
Concurrency bugs are one of the most harmful and hard-to-address
issues in multithreaded software. Such bugs are hard to discover,
reproduce, diagnose or fix due to their non-deterministic nature.
Although more and more bug discovery solutions are proposed
in recent years, it is difficult to evaluate them with existing con-
currency bug datasets. The demand for building a high-quality
benchmark of concurrency bugs emerges.

In this paper, we present an automated bug injection solution
to automatically inject representative concurrency bugs into real
world multithreaded C/C++ programs, and present the first trig-
gerable and observable concurrency bug benchmark RaceBench.
We have conducted a large-scale empirical study on concurrency
bugs, learned their patterns, and built a program state model to
characterize them, which enables us to inject representative bugs.
To make the bugs triggerable, we follow the dynamic execution
traces of target programs and inject bugs at locations that are reach-
able from the program entry. To make the bugs observable, these
bugs are followed by explicit security assertions, removing the re-
quirement of sophisticated sanitizers to detect the existence of such
bugs. We built a benchmark consisting of 1500 bugs injected into
15 programs, and evaluated four concurrency bug discovery tools
and one general bug discovery tool with it. Results showed that
existing concurrency bug discovery solutions are still in the early
stage, and our benchmark could shed light on the future direction
of improvements.

CCS CONCEPTS
• Software and its engineering→ Software defect analysis.
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1 INTRODUCTION
Concurrent programs are prevalent due to the wide use of multi-
core systems. However, it is not easy to write correct concurrent
programs because programmers have to deal with special con-
structs (e.g., threads and locks) and avoid synchronization issues
(e.g., race conditions and deadlocks). Therefore, a large number
of concurrency bugs are introduced in modern multithreaded pro-
grams. Some of these bugs have even caused severe consequences,
e.g., the DirtyCow [2] bug caused kernel privilege escalation which
endangers the operating system and the Therac-25 [24] bug caused
radiation overdoses which endangered human lives.

To mitigate the threat of concurrency bugs, many concurrency
bug discovery techniques have been proposed, such as static-based
race detectors [6, 28, 29], dynamic-based race detectors [23, 27],
thread scheduling strategies [7, 32], and thread-aware fuzzing [8, 18,
26]. However, concurrency bugs have a non-deterministic nature
that they can only be triggered when the threads are interleaved
in certain orders. Therefore, it is hard to reproduce or diagnose
the concurrency bugs reported by these tools or compare these
tools’ performance. In practice, researchers turn to select some
target programs and manually verify the reported bugs one by
one, or manually prepare a set of ground-truth bugs [12, 17] for
the tools to detect. Such manually assisted evaluations in general
only cover a limited number of bug types and applications. It is
unreliable to fairly compare different concurrency bug discovery
techniques in this way, which hinders researchers from locating
existing solutions’ bottlenecks or finding potential directions for
improvements.

To facilitate the research of discovering or diagnosing concur-
rency bugs, researchers have provided several concurrency bug
datasets. The first type of datasets are manually collected from
real-world applications [11, 17, 33]. Such datasets consist of au-
thentic bugs, but the bug count is relatively small. They in general
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only include 1 or 2 bugs for each program and have less than 100
bugs in total, therefore are insufficient to precisely evaluate the
performance of modern tools. The other type of datasets are au-
tomatically generated by certain bug injection solutions [13, 15].
Such datasets in general have good scalability and have a large
number of bugs. But they may have bugs that are not triggerable
(e.g., due to path constraints) or not observable (e.g., no abnormal
behaviors are exhibited), causing problems in evaluating dynamic
analysis and testing techniques.

Therefore, a high-quality benchmark consisting of a large num-
ber of concurrency bugs is demanded. In order to evaluate different
types of concurrency bug discovery techniques, we argue that a
high-quality benchmark should have three characteristics.

C1: Representative. In order to thoroughly evaluate different tech-
niques, the benchmark should be representative of real-world
concurrency issues. This does not mean that the synthetic
bugs have to be representative in all aspects to imitate real
ones. Instead, the synthetic bugs are expected to cover com-
mon bug types, causes, and code patterns of real-world con-
currency bugs. Further, the synthetic bugs should be located
in real-world applications rather than self-crafted small test-
ing programs, making the hosting application representative.

C2: Triggerable. The bugs in the benchmark should be triggerable,
i.e., there are certain pairs of (inputs, thread interleavings)
able to trigger the bugs. In other words, the bug will be trig-
gered when the specific inputs are given to the program and
the specific thread interleaving is followed. Otherwise, the
bugs are in fact false positives, not suitable for tool perfor-
mance evaluation.

C3: Observable. The bugs in the benchmark should have observable
outcomes, e.g., crashing or hanging, when they are success-
fully triggered. Otherwise, such bugs (e.g., ones that yield
wrong outputs rather than crash or hang) are not detectable
by awide range of tools (e.g., fuzzing-based solutionswithout
proper sanitizers). Developing concurrency-sensitive sani-
tizers is a topic orthogonal to concurrency bug discovery. To
support the evaluation of more tools without extra effort, we
argue that the benchmark should only consist of bugs with
observable outcomes.

In this work, we propose a novel bug injection solution RaceBench,
able to automatically inject representative, triggerable and observ-
able concurrency bugs into existing real-worldmultithreaded C/C++
programs and build high-quality benchmarks of concurrency bugs.

First, to make the bugs representative, we conducted a large-scale
empirical study on existing concurrency bugs, learned their causes
and types, and formally describe the common code patterns of the
majority of them with a general program state modeling language.
Using these code patterns as templates, RaceBench could generate
numerous concurrency bugs on demand. Such generated bugs are
injected into real-world applications and share the same patterns
with existing bugs, and thus are representative.

Second, to make the bugs triggerable, we adopt a trace-based
approach and only inject concurrency bugs at proper locations in
feasible program paths. Specifically, RaceBench first utilizes dy-
namic testing to get one feasible execution trace, then locates pairs
of spots in the trace that can be concurrently executed by two

threads, and finally injects concurrency bugs at such pairs of spots.
Therefore, if we run the new program with the same inputs and
thread execution orders as the trace, and provide a proper thread
interleaving related to the bug injection spots, then the injected
bugs will be triggered.

Lastly, to make the bugs observable, RaceBench further injects
security assertions right after the injected triggerable bugs, which
will crash and report bug contexts deliberately. The program will
crash once the injected bugs are triggered, and thus can be observed
by tools without extra effort. In the future, if developers would like
to develop and assess concurrency-related sanitizers, we could
simply disable these injected assertions.

Based on the proposed approach, we have built a concurrency
bug benchmark RaceBench, consisting of 15 real-world programs,
each of which is injected with 100 concurrency bugs. The dataset
covers the majority of bug patterns, a wide range of concurrent
applications and bug difficulties. Note that, the number of bugs,
patterns of bugs, and the difficulties of bugs are all configurable or
extendable. The benchmark also provides scripts and inputs that
can be used to reproduce and verify bugs.

With the benchmark, we further evaluated four open-source
concurrency bug discovery tools, i.e., ConAFL, OpenRace, TSan,
Maple, and one general bug discovery tool AFL++. These tools
adopt different techniques and have different performances on
bugs of different patterns and complexity. Results showed that,
among the four tools targeting concurrency bugs, only TSan finds
more concurrency bugs than the popular thread-unaware fuzzer
AFL++. It indicates that there is a lot of room for improvements in
concurrency bug discovery techniques with respect to improving
reproducibility, reducing runtime overhead, using better thread
scheduling strategies, and considering thread interleaving space
together with the input space. It is still a big challenge to combine
existing techniques to find concurrency bugs effectively.

In this paper, we make the following contributions:
• We present an automated bug injection solution RaceBench,
which is able to automatically inject representative, trigger-
able and observable concurrency bugs.

• We conducted a large-scale empirical study on concurrency
bugs, learned their patterns, and built a program state model
to characterize the majority of them.

• We constructed a benchmark consisting of a large number of
concurrency bugs with the proposed bug injection solution.

• We evaluated several bug discovery solutions with the bench-
mark and showed their limitations, while shedding lights on
the future direction of improvements.

• We open source RaceBench1 and the benchmark2, to facili-
tate the community on the research of concurrency bugs.

2 EMPIRICAL STUDY
To make the injected bugs representative, we need to find out the
types of concurrency bugs that commonly appear in practice, the
causes of the concurrency bugs, and their code patterns. Therefore,
we conducted a large scale empirical study on historic concurrency
bugs in real-world software.

1https://github.com/rb130/RaceBench
2https://github.com/rb130/RaceBenchData
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2.1 Methodology
We collected real bugs from the CVE (Common vulnerabilities and
exposures) list and existing datasets for study. First, we collected
all 280 bugs in the CVE list dating from 2020 to 2022 matching
the keywords: race, concurrent, lock, atomic, sync, thread, or wait.
Then we manually checked their description to verify whether they
are indeed concurrency bugs, and removed 116 non-concurrent
bugs and 72 bugs without technical details, leaving 92 bugs. Second,
we also collected bugs from two existing datasets RADbench [11]
and the one [31] labeled by Yu and Narayanasamy. Apart from
bugs that are not confirmed by developers, we obtained another
30 bugs from these two datasets. In total, 122 concurrency bugs
are included in this paper for further concurrency bugs analysis.
These bugs mainly reside in open source projects of various kinds,
including large-size projects such as Firefox, Android, Linux kernel,
and MySQL, as well as some small-size or medium-size projects.

We then analyzed these 122 bugs from two perspectives: bug
types and bug causes. For bug types, we study taxonomy from
previous works [3, 10, 17, 21] and classify bugs according to their
technical mechanisms. For bug causes, we investigate why program-
mers would introduce concurrency bugs, based on the discussions
on the software issue tracking platforms (e.g., GitHub, Bugzilla) and
the commit messages of the bug fixes. Then we characterize the
common code patterns of such bugs and formally describe them
with a general program state modeling language.

2.2 Concurrency Bug Categorization
By analyzing the collected bugs, we group the bugs into different
types and causes.

2.2.1 Bug Types. Concurrency bugs can be classified according to
their technical forms:

P1: Atomicity Violation. In concurrent programs, a thread
often needs to perform some operations atomically.While executing
these operations, the results should never be interfered by other
threads. Atomicity violation happens when a group of operations
that should be atomic are not enforced by thread synchronization
primitives (such as atomic memory operations and locks). More
details will be presented in §2.3.2.

P2: Order Violation. Some operations in a thread have to ex-
ecute after certain operations in another thread. For example, a
variable can only be accessed after initialization in another thread,
and a heap object is allowed to be released only if it is no longer
used. If operations from different threads are not executed in the
correct order, the program will enter an invalid state. More details
will be presented in §2.3.3.

P3: Deadlocks. Deadlock is a situation where several threads
circularly wait for resources held by each other. Apart from resource
contention, threads circularly waiting for messages can also result
in a communication deadlock.

P4: Miscellaneous. There are some other types of concurrency
bugs, such as thread starvation and livelock. More details of these
types of bugs could be found in studies [3, 4].

Note that, a common type of concurrency bugs — data race — is
not listed in this classification. From the definition, we know that a
data race occurs when two or more threads access the samememory
location at the same time and at least one access is writing. In fact,

Table 1: Statistics of types and causes of bugs.
R1: Wrong Program
State Assumption

R2: API
Misuse

R3: Lock Depen-
dency Issue R4: Other

P1: Atomicity
Violation 66 3 0 1

P2: Order
Violation 23 2 0 0

P3: Deadlock 2 1 7 1
P4: Miscellaneous 0 20 0 3
The sum of data in the table is greater than the number of bugs (122),
because some complex bugs have multiple causes.

data races are further divided into atomicity and order violations
in the aforementioned classification.

2.2.2 Bug Causes. From the aspect of how programmers make
mistakes, concurrency bugs can be classified as follows:

R1: Wrong Program State Assumption. Developers may as-
sume the program executes sequentially, and the program state
(e.g., the value of one variable) does not change from the last write
operation till the current site. This assumption holds in most cases,
but not all cases. For instance, in a multi-threaded program, the
value of a variable in one thread could be modified by code in an-
other thread. In such cases, the program state may change in a way
unexpected by developers, which further causes bugs.

R2: APIMisuse.When a programmer does not fully understand
the behavior or side effects of an API, he may use it in a wrong way
or in a wrong scenario. For example, the API pthread_cond_wait
can be used to block the current thread until it receives a notification
from a condition variable; however, the programmer may not know
that spurious wakeups can occur, which will continue the execution
with an unmet condition. Besides, when a thread-unsafe library is
used by a multi-threaded program, the programmer may forget to
wrap the API with locks at some point.

R3: Lock Dependency Issues. Most deadlock bugs are caused
by the failure of lock dependency management. When an action of
a thread involves multiple resources and their corresponding locks,
the programmer needs to be very careful about the lock relations.
Acquiring locks in an incorrect order can result in two or more
threads circularly waiting for each other. As an example to show the
significance of this cause, the Linux kernel uses a runtime validator
lockdep to detect lock dependency issues3.

R4: Other. There are a small number of concurrency bugs caused
by other reasons, such as algorithmic errors and design issues.

2.2.3 Statistics and Justification. Table 1 shows the statistics of
types and causes of all 122 bugs we studied. We can see that wrong
program state assumption is the major cause of concurrency bugs.
Most bugs caused by wrong assumptions fall into the bug types of
atomicity or order violation, while most atomicity or order violation
bugs result from wrong assumptions.

Based on this observation, we focus on building a benchmark of
concurrency bugs that are caused by wrong program state assump-
tions and fall into atomicity or order violation. Such bugs cover
about 69% of bugs we studied, which we think is a large proportion
of concurrency bugs in practice.

2.3 Bug Modeling
In this section, we introduce the code patterns of bugs that we
will cover in the benchmark, to facilitate further automated bug
3https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt

417

https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt


ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Jiashuo Liang, Ming Yuan, Zhanzhao Ding, Siqi Ma, Xinhui Han, and Chao Zhang

1 state_1 = S t a t e ;
2 S t a t e = state_2;

3 assume( S t a t e == state_1);

(a1) Read-Write-Assume

1 S t a t e = state_1;

2 S t a t e = state_2;

3 assume( S t a t e == state_1);

(a2) Write-Write-Assume

1 /* init */ S t a t e = state_0;

2 S t a t e = state_1;

3 assume( S t a t e == state_0

4 or S t a t e == state_2);

5 S t a t e = state_2;

(a3) Write-Assume-Write
(a) Wrong program state assumptions made by atomicity violation bugs.

1 l o c k .acquire ();
2 op_x(& S t a t e );
3 op_y(& S t a t e );
4 l o c k .release ();
5 l o c k .acquire ();
6 op_z(& S t a t e );
7 l o c k .release ();

(b1) Valid Protection �

1 op_x(& S t a t e );
2 op_z(& S t a t e );
3 op_y(& S t a t e );

(b2) No Protection

1 l o c k .acquire ();
2 op_x(& S t a t e );
3 op_z(& S t a t e );
4 op_y(& S t a t e );
5 l o c k .release ();

(b3) Partial Protection

1 l o c k .acquire ();
2 op_x(& S t a t e );
3 l o c k .release ();
4 l o c k .acquire ();
5 op_z(& S t a t e );
6 l o c k .release ();
7 op_y(& S t a t e );

(b4) Short Critical Section

1 l o c k .acquire ();
2 op_x(& S t a t e );
3 l o c k .release ();
4 l o c k .acquire ();
5 op_z(& S t a t e );
6 l o c k .release ();
7 l o c k .acquire ();
8 op_y(& S t a t e );
9 l o c k .release ();

(b5) Split Critical Section
(b) Valid and invalid critical section protections against atomicity violations.

Figure 1: Code patterns of atomicity violation bugs.

injection. Specifically, we will describe the common patterns of
atomic violation and order violation bugs caused by wrong program
state assumptions. First of all, we propose a program state modeling
language to formally describe them. Then, we detail the description
of each code pattern with this model. These patterns can be used as
templates to automatically generate the core code of concurrency
bugs, which will be discussed in §3.5.

2.3.1 Program State Modeling Language. Before digging into the
detailed code patterns, we first introduce a general language. Here,
we denote the program state as the aggregation of all variables
shared between threads in a program, using the terminology 𝑆𝑡𝑎𝑡𝑒 .
Each shared variable is a member of 𝑆𝑡𝑎𝑡𝑒 , for example, 𝑆𝑡𝑎𝑡𝑒.𝑣𝑎𝑟0.
An assignment in the form of 𝑆𝑡𝑎𝑡𝑒 = 𝑆0 means transforming to a
new program state 𝑆0. An assignment in the form of 𝑆𝑡𝑎𝑡𝑒.𝑣𝑎𝑟0 = 𝑥

means transforming to a new program state where only 𝑆𝑡𝑎𝑡𝑒.𝑣𝑎𝑟0
is changed to 𝑥 . Assumptions made by developers can be rep-
resented by statements like assume(𝑐𝑜𝑛𝑑 (𝑆𝑡𝑎𝑡𝑒.𝑣𝑎𝑟0, 𝑆𝑡𝑎𝑡𝑒.𝑣𝑎𝑟1)),
which means the program state is assumed to meet a certain condi-
tion defined by the boolean function 𝑐𝑜𝑛𝑑 .

When using this language to describe code patterns in the fol-
lowing sections, we put Thread 1 on the left side, Thread 2 on the
right side, and the initial states on the top. We mark bug and bug-
free code patterns with icons
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1 /* init */ S t a t e .vars = vars_0;

2 /* init */ S t a t e .complete = false;

3 cv .wait( S t a t e .complete);
4 S t a t e .vars = vars_1;

5 S t a t e .complete = true;

6 cv .notify ();
7 assume( S t a t e .vars == vars_1);

(a1) Valid Wait �

1 /* init */ S t a t e .vars = vars_0;

2 /* init */ S t a t e .complete = false;

3 S t a t e .vars = vars_1;

4 barrier ();

5 S t a t e .complete = true;

6 if ( S t a t e .complete)
7 assume( S t a t e .vars == vars_1);

(a2) Non-blocking Check �

1 /* init */ S t a t e .vars = vars_0;

2 /* init */ S t a t e .complete = false;

3 S t a t e .complete = true;

4 if ( S t a t e .complete)
5 assume( S t a t e .vars == vars_1);

6 S t a t e .vars = vars_1;

(a3) Instruction Reorder 

1 /* init */ S t a t e .vars = vars_0;

2 sleep(some_time);

3 assume( S t a t e .vars == vars_1);

4 S t a t e .vars = vars_1;

(a4) Sleep without Sync 


1 /* init */ S t a t e .vars = vars_0;

2 assume( S t a t e .vars == vars_1);

3 S t a t e .vars = vars_1;

(a5) No Protection / Wrong Condition 


Figure 2: Code patterns of order violation bugs.

ValidWait. In Figure 2a1, the correct order is ensured bywaiting.
Thread 1 blocks until 𝑆𝑡𝑎𝑡𝑒.𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 becomes true, so that the
assignment to 𝑆𝑡𝑎𝑡𝑒.𝑣𝑎𝑟𝑠 in Thread 2 can be executed before the
assumption. After setting 𝑆𝑡𝑎𝑡𝑒.𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 , Thread 2 uses the notify
primitive to wake up Thread 1.

Non-blockingCheck. In Figure 2a2, the correct order is achieved
in a non-blocking way. In practice, people may care about the per-
formance overhead of waiting, so they check the condition without
blocking the thread.

Instruction Reorder. Note that instructions may get reordered
by either the compiler or the processor, for performance reasons.
As shown in Figure 2a3, even if the condition is set after the vari-
able assignment in Thread 2, it may get executed earlier due to
instruction reordering. This can be resolved by adding a memory
barrier before setting 𝑆𝑡𝑎𝑡𝑒.𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 , as shown in Figure 2a2.

Sleep without Sync. In Figure 2a4, the programmer falsely uses
sleep instead of wait to synchronize the order. However, when
the computer is busy, the operating system can leave Thread 2
unscheduled for a long time. So the assumed condition can still be
unsatisfied even after sleep finishes.

No Protection / Wrong Condition (NoWait). In Figure 2a5,
Thread 1 does not check the order condition at all, or checks a wrong
condition, which is equivalent to no protection. In practice, the
assumption in Thread 1 is often placed after some time-consuming
operations, or in a rarely used function. So the incorrect execution
order is unlikely to trigger, leaving a hidden bug.

Table 2: Statistics of the code patterns for bugs we studied.
★means the code pattern is unclear.

(a) Atomicity Violation

RWA WWA WAW *
NoLock 11 4 1 3
Partial 6 0 2 3
Short 4 0 2 1
Split 8 9 3 0
* 5 1 0 3

(b) Order Violation

Reorder 1
Sleep 1
NoWait 17

* 4

2.3.4 Statistics. Table 2 shows the statistics of the code patterns
for bugs that we focus on, i.e., atomicity and order violations caused
by wrong program state assumptions. We can see that the code
patterns we summarized cover the majority of the bugs we studied.
Further, we will build a concurrency bug benchmark with the code
patterns presented in this section.

3 AUTOMATED BUG INJECTION
In this section, we illustrate the design of RaceBench, an automatic
concurrency bug injection tool.

3.1 Overview
An intuitive idea to add triggerable concurrency bugs is injecting
buggy code to a pair of locations that are simultaneously executed
by two threads. RaceBench finds such locations from a dynamic
execution trace of the program, so they are always reachable as long
as the trace is followed. Similar to real bugs, a bug in RaceBench has
three conceptual parts: the prologue, the precondition, and the bug
core. The prologue prepares a program state to be used later. The
precondition checks whether the program state is the expected one.
If the precondition is met, the program enters the bug core, which
matches one of the previously described code patterns introduced
by wrong program state assumptions.

Figure 3 shows the overall process of automatically adding one
bug. Since not all programs are suitable for injecting concurrency
bugs, we first conduct target program selection to find the suit-
able programs. Given the source code of the selected program,
RaceBench uses a trace-based approach to inject concurrency bugs.
In the step of execution trace recording, RaceBench runs the program
under a debugger, feeds it with an input, and records the execution
trace. In the next step bug location selection, RaceBench analyzes
the code to select a series of locations from the trace, including the
prologue code instrumentation locations, and the race pair loca-
tions that can be concurrently executed by two threads. Then in the
bug code generation phase, RaceBench randomly generates program
state operations, which are simulated and injected to previously
selected locations, forming a concurrency bug.

To trigger the bug, one has to find the correct thread interleav-
ing to pass the precondition and break the wrong program state
assumption in the bug core. A specific input may also be required,
depending on whether the input is used in the required program
state. Note that the thread interleaving that triggers the injected
bug is not necessarily the same as the one recorded in the trace.
When a bug is triggered, RaceBench will abort the program to make
it observable. The bug ID will also be recorded so that the users
can easily know which bug is discovered.

Figure 4 demonstrates an example of a synthetic atomicity viola-
tion bug of the Write-Write-Assume code pattern. It will be used

and
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1 /* init */ S t a t e .vars = vars_0;

2 /* init */ S t a t e .complete = false;

3 cv .wait( S t a t e .complete);
4 S t a t e .vars = vars_1;

5 S t a t e .complete = true;

6 cv .notify ();
7 assume( S t a t e .vars == vars_1);

(a1) Valid Wait �

1 /* init */ S t a t e .vars = vars_0;

2 /* init */ S t a t e .complete = false;

3 S t a t e .vars = vars_1;

4 barrier ();

5 S t a t e .complete = true;

6 if ( S t a t e .complete)
7 assume( S t a t e .vars == vars_1);

(a2) Non-blocking Check �

1 /* init */ S t a t e .vars = vars_0;

2 /* init */ S t a t e .complete = false;

3 S t a t e .complete = true;

4 if ( S t a t e .complete)
5 assume( S t a t e .vars == vars_1);

6 S t a t e .vars = vars_1;

(a3) Instruction Reorder 

1 /* init */ S t a t e .vars = vars_0;

2 sleep(some_time);

3 assume( S t a t e .vars == vars_1);

4 S t a t e .vars = vars_1;

(a4) Sleep without Sync 


1 /* init */ S t a t e .vars = vars_0;

2 assume( S t a t e .vars == vars_1);

3 S t a t e .vars = vars_1;

(a5) No Protection / Wrong Condition 


Figure 2: Code patterns of order violation bugs.

ValidWait. In Figure 2a1, the correct order is ensured bywaiting.
Thread 1 blocks until 𝑆𝑡𝑎𝑡𝑒.𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 becomes true, so that the
assignment to 𝑆𝑡𝑎𝑡𝑒.𝑣𝑎𝑟𝑠 in Thread 2 can be executed before the
assumption. After setting 𝑆𝑡𝑎𝑡𝑒.𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 , Thread 2 uses the notify
primitive to wake up Thread 1.

Non-blockingCheck. In Figure 2a2, the correct order is achieved
in a non-blocking way. In practice, people may care about the per-
formance overhead of waiting, so they check the condition without
blocking the thread.

Instruction Reorder. Note that instructions may get reordered
by either the compiler or the processor, for performance reasons.
As shown in Figure 2a3, even if the condition is set after the vari-
able assignment in Thread 2, it may get executed earlier due to
instruction reordering. This can be resolved by adding a memory
barrier before setting 𝑆𝑡𝑎𝑡𝑒.𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 , as shown in Figure 2a2.

Sleep without Sync. In Figure 2a4, the programmer falsely uses
sleep instead of wait to synchronize the order. However, when
the computer is busy, the operating system can leave Thread 2
unscheduled for a long time. So the assumed condition can still be
unsatisfied even after sleep finishes.

No Protection / Wrong Condition (NoWait). In Figure 2a5,
Thread 1 does not check the order condition at all, or checks a wrong
condition, which is equivalent to no protection. In practice, the
assumption in Thread 1 is often placed after some time-consuming
operations, or in a rarely used function. So the incorrect execution
order is unlikely to trigger, leaving a hidden bug.

Table 2: Statistics of the code patterns for bugs we studied.
★means the code pattern is unclear.

(a) Atomicity Violation

RWA WWA WAW *
NoLock 11 4 1 3
Partial 6 0 2 3
Short 4 0 2 1
Split 8 9 3 0
* 5 1 0 3

(b) Order Violation

Reorder 1
Sleep 1
NoWait 17

* 4

2.3.4 Statistics. Table 2 shows the statistics of the code patterns
for bugs that we focus on, i.e., atomicity and order violations caused
by wrong program state assumptions. We can see that the code
patterns we summarized cover the majority of the bugs we studied.
Further, we will build a concurrency bug benchmark with the code
patterns presented in this section.

3 AUTOMATED BUG INJECTION
In this section, we illustrate the design of RaceBench, an automatic
concurrency bug injection tool.

3.1 Overview
An intuitive idea to add triggerable concurrency bugs is injecting
buggy code to a pair of locations that are simultaneously executed
by two threads. RaceBench finds such locations from a dynamic
execution trace of the program, so they are always reachable as long
as the trace is followed. Similar to real bugs, a bug in RaceBench has
three conceptual parts: the prologue, the precondition, and the bug
core. The prologue prepares a program state to be used later. The
precondition checks whether the program state is the expected one.
If the precondition is met, the program enters the bug core, which
matches one of the previously described code patterns introduced
by wrong program state assumptions.

Figure 3 shows the overall process of automatically adding one
bug. Since not all programs are suitable for injecting concurrency
bugs, we first conduct target program selection to find the suit-
able programs. Given the source code of the selected program,
RaceBench uses a trace-based approach to inject concurrency bugs.
In the step of execution trace recording, RaceBench runs the program
under a debugger, feeds it with an input, and records the execution
trace. In the next step bug location selection, RaceBench analyzes
the code to select a series of locations from the trace, including the
prologue code instrumentation locations, and the race pair loca-
tions that can be concurrently executed by two threads. Then in the
bug code generation phase, RaceBench randomly generates program
state operations, which are simulated and injected to previously
selected locations, forming a concurrency bug.

To trigger the bug, one has to find the correct thread interleav-
ing to pass the precondition and break the wrong program state
assumption in the bug core. A specific input may also be required,
depending on whether the input is used in the required program
state. Note that the thread interleaving that triggers the injected
bug is not necessarily the same as the one recorded in the trace.
When a bug is triggered, RaceBench will abort the program to make
it observable. The bug ID will also be recorded so that the users
can easily know which bug is discovered.

Figure 4 demonstrates an example of a synthetic atomicity viola-
tion bug of the Write-Write-Assume code pattern. It will be used

respectively. For the sake of
simplicity, the code patterns are described in sequential consistency
memory models. To use them on weak memory consistency proces-
sors, we can add memory barriers at expected thread switch points
to ensure the visibility of memory modifications.

2.3.2 Atomicity Violation. The code patterns of atomicity violation
bugs can be characterized from two dimensions: what assumptions
are made, and how critical sections are used, as shown in Figure 1.
Note that these two dimensions are orthogonal.

Dimension 1: Wrong Assumptions Atomicity violations are often
caused by three types of wrong assumptions, as shown in Figure
1a.

Read-Write-Assume (RWA). In Figure 1a1, Thread 1 reads
from the program state and saves it into a temporary variable
𝑠𝑡𝑎𝑡𝑒1. Then shortly it assumes the current program state is the
same as 𝑠𝑡𝑎𝑡𝑒1, since no changes are made in this thread. However,

it does not expect that Thread 2 (on the right) could change the
program state in between the read site and the assumption site.

Write-Write-Assume (WWA). In Figure 1a2, Thread 1 changes
the program state to a new state 𝑠𝑡𝑎𝑡𝑒1, and then shortly it assumes
the program state is still 𝑠𝑡𝑎𝑡𝑒1. However, Thread 2 could change
the program state in between the write and the assumption sites.

Write-Assume-Write (WAW). In Figure 1a3, Thread 1 intends
to perform an action that requires two continuous write operations
to the program state. Thread 2 assumes that neither or both opera-
tions have been executed. If Thread 2 gets executed when only one
operation completes, it will get an invalid intermediate state.

Dimension 2: Invalid critical section protections Atomicity is often
enforced by mutual exclusion locks. A pair of lock acquiring and
releasing statements creates a critical section that no more than
one thread can enter. Suppose that Thread 1 wants to guarantee the
atomicity of two operations 𝑜𝑝𝑥 and 𝑜𝑝𝑦 and stops the operation
𝑜𝑝𝑧 of Thread 2 from breaking it. We show a valid protection and
the common code patterns of invalid protections in Figure 1b.

Valid Protection. As shown in Figure 1b1, a valid protection
should put two operations 𝑜𝑝𝑥 and 𝑜𝑝𝑦 in one critical section and
put 𝑜𝑝𝑧 in another, so that 𝑜𝑝𝑧 can only be executed before or after
them rather than in between them.

No Protection (NoLock). In Figure 1b2, the code is not pro-
tected at all, so threads can interleave arbitrarily. Atomicity is vio-
lated if the instructions are executed in the shown order.

Partial Protection. In Figure 1b3, only one thread is protected
with a lock. As the other thread is unaware of the lock, it runs
regardless of the critical section.

Short Critical Section. In Figure 1b4, both threads try to protect
the operations but at least one important operation is still outside
critical sections. The critical section in Thread 1 is not large enough,
giving Thread 2 a chance to interfere.

Split Critical Section. In Figure 1b5, the two operations in
Thread 1 are supposed to be atomic as a whole, but they are put
into separated critical sections, so Thread 2 can still interfere.

2.3.3 Order Violation. As shown in Figure 2, there are three com-
mon code patterns of order violations.

ValidWait. In Figure 2a1, the correct order is ensured bywaiting.
Thread 1 blocks until 𝑆𝑡𝑎𝑡𝑒.𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 becomes true, so that the
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1 /* init */ S t a t e .vars = vars_0;

2 /* init */ S t a t e .complete = false;

3 cv .wait( S t a t e .complete);
4 S t a t e .vars = vars_1;

5 S t a t e .complete = true;

6 cv .notify ();
7 assume( S t a t e .vars == vars_1);

(a1) Valid Wait �

1 /* init */ S t a t e .vars = vars_0;

2 /* init */ S t a t e .complete = false;

3 S t a t e .vars = vars_1;

4 barrier ();

5 S t a t e .complete = true;

6 if ( S t a t e .complete)
7 assume( S t a t e .vars == vars_1);

(a2) Non-blocking Check �

1 /* init */ S t a t e .vars = vars_0;

2 /* init */ S t a t e .complete = false;

3 S t a t e .complete = true;

4 if ( S t a t e .complete)
5 assume( S t a t e .vars == vars_1);

6 S t a t e .vars = vars_1;

(a3) Instruction Reorder 

1 /* init */ S t a t e .vars = vars_0;

2 sleep(some_time);

3 assume( S t a t e .vars == vars_1);

4 S t a t e .vars = vars_1;

(a4) Sleep without Sync 


1 /* init */ S t a t e .vars = vars_0;

2 assume( S t a t e .vars == vars_1);

3 S t a t e .vars = vars_1;

(a5) No Protection / Wrong Condition 


Figure 2: Code patterns of order violation bugs.

assignment to 𝑆𝑡𝑎𝑡𝑒.𝑣𝑎𝑟𝑠 in Thread 2 can be executed before the
assumption. After setting 𝑆𝑡𝑎𝑡𝑒.𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 , Thread 2 uses the notify
primitive to wake up Thread 1.

Non-blockingCheck. In Figure 2a2, the correct order is achieved
in a non-blocking way. In practice, people may care about the per-
formance overhead of waiting, so they check the condition without
blocking the thread.

Instruction Reorder. Note that instructions may get reordered
by either the compiler or the processor, for performance reasons. In
Figure 2a3, even if the condition is set after the variable assignment
in Thread 2, it may get executed earlier due to instruction reordering.
This can be resolved by adding a memory barrier before setting
𝑆𝑡𝑎𝑡𝑒.𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 , as shown in Figure 2a2.

Sleep without Sync. In Figure 2a4, the programmer falsely uses
sleep instead of wait to synchronize the order. However, when
the computer is busy, the operating system can leave Thread 2
unscheduled for a long time. So the assumed condition can still be
unsatisfied even after sleep finishes.

No Protection / Wrong Condition (NoWait). In Figure 2a5,
Thread 1 does not check the order condition at all, or checks a wrong
condition, which is equivalent to no protection. In practice, the
assumption in Thread 1 is often placed after some time-consuming
operations, or in a rarely used function. So the incorrect execution
order is unlikely to trigger, leaving a hidden bug.

Table 2: Statistics of the code patterns for bugs we studied.
★means the code pattern is unclear.

(a) Atomicity Violation

RWA WWA WAW *
NoLock 11 4 1 3
Partial 6 0 2 3
Short 4 0 2 1
Split 8 9 3 0
* 5 1 0 3

(b) Order Violation

Reorder 1
Sleep 1
NoWait 17

* 4

2.3.4 Statistics. Table 2 shows the statistics of the code patterns
for bugs that we focus on, i.e., atomicity and order violations caused
by wrong program state assumptions. We can see that the code
patterns we summarized cover the majority of the bugs we studied.
Further, we will build a concurrency bug benchmark with the code
patterns presented in this section.

3 AUTOMATED BUG INJECTION
In this section, we illustrate the design of RaceBench, an automatic
concurrency bug injection tool.

3.1 Overview
An intuitive idea to add triggerable concurrency bugs is injecting
buggy code to a pair of locations that are simultaneously executed
by two threads. RaceBench finds such locations from a dynamic
execution trace of the program, so they are always reachable as long
as the trace is followed. Similar to real bugs, a bug in RaceBench has
three conceptual parts: the prologue, the precondition, and the bug
core. The prologue prepares a program state to be used later. The
precondition checks whether the program state is the expected one.
If the precondition is met, the program enters the bug core, which
matches one of the previously described code patterns introduced
by wrong program state assumptions.

Figure 3 shows the overall process of automatically adding one
bug. Since not all programs are suitable for injecting concurrency
bugs, we first conduct target program selection to find the suit-
able programs. Given the source code of the selected program,
RaceBench uses a trace-based approach to inject concurrency bugs.
In the step of execution trace recording, RaceBench runs the program
under a debugger, feeds it with an input, and records the execution
trace. In the next step bug location selection, RaceBench analyzes
the code to select a series of locations from the trace, including the
prologue code instrumentation locations, and the race pair loca-
tions that can be concurrently executed by two threads. Then in the
bug code generation phase, RaceBench randomly generates program
state operations, which are simulated and injected to previously
selected locations, forming a concurrency bug.

To trigger the bug, one has to find the correct thread interleav-
ing to pass the precondition and break the wrong program state
assumption in the bug core. A specific input may also be required,
depending on whether the input is used in the required program
state. Note that the thread interleaving that triggers the injected
bug is not necessarily the same as the one recorded in the trace.
When a bug is triggered, RaceBench will abort the program to make
it observable. The bug ID will also be recorded so that the users
can easily know which bug is discovered.

Figure 4 demonstrates an example of a synthetic atomicity viola-
tion bug of the Write-Write-Assume code pattern. It will be used
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Figure 3: Overview of the trace-based concurrency bug injection approach taken by RaceBench.

S t a t e .var_0 = 0;

S t a t e .var_1 = 0;

S t a t e .var_2 = 0;

input = input_bytes ();
1 int i, x = 0;

2

3

4 for (i = 0; i < 3; ++i) {

5 S t a t e .var_1 += S t a t e .var_0;
6 x = x ^ arr[i];

7 }

8 if ( S t a t e .var_1 == 9)

9 S t a t e .var_2 = S t a t e .var_0 + 1;

10 printf("thread 1\n");

11

12

13

14 if (x == 0) {

15 if ( S t a t e .var_1 == 9)

16 assert( S t a t e .var_2 ==

17 S t a t e .var_0 + 1);

18 printf("x=0\n");

19 }

1

2 S t a t e .var_0 = input [5];

3 printf("thread 2\n");

4

5

6

7

8

9

10

11 if ( S t a t e .var_1 == 9)

12 S t a t e .var_2 = 20;

13 some_work ();

14

15

16

17

18

19

The injected code are in colored boxes: the prologue in gray, the 
precondition in cyan, and the bug core in red.

Figure 4: A concurrency bug injected by RaceBench.

as the running example throughout this section. We will illustrate
how a concurrency bug is injected step by step as follows.

3.2 Target Program Selection
We select programs that are suitable for the benchmark based on
the following requirements:
Concurrent: The program should have multiple threads, i.e., the

program can be executed concurrently.
Input-needed: The program should read some inputs. Although

a concurrency bug may not require any input, there are also
concurrency bugs that only appear under certain ill-formed
inputs. This enables the bug discovery tools (e.g., fuzzers) to
test the program by exploring the input space if they want.

Short-lived: The program should finish in a short time, i.e., the
program is not a daemon and does not contain any endless
loops. Many dynamic bug discovery tools (e.g., Muzz [8] and
Maple [32]) rely on testing the program multiple times and

Table 3: An execution trace of the example in Figure 4.

Item ID Thread ID Location New Race Pair
(Item IDs) Program State ∗

1 1 line 1 n/a [0, 0, 0]
2 2 line 3 (2,1) [3, 0, 0]
3 1 line 4 (3,2) [3, 0, 0]
4 1 line 6 (4,2) [3, 3, 0]
5 1 line 6 (5,2) [3, 6, 0]
6 1 line 6 (6,2) [3, 9, 0]
7 1 line 10 (7,2) [3, 9, 4]
8 2 line 13 (8,7) [3, 9, 20]
9 1 line 14 (9,8) [3, 9, 20]
10 1 line 18 (10,8) [3, 9, 20]

∗ The program state is represented as a list of values of variables in
𝑆𝑡𝑎𝑡𝑒 . Suppose that the example bug code uses an input  le where 
input[5] is 3.

following steps: 1© Randomly select one of the threads waiting to
be executed; 2© Let the selected thread execute a single statement
and stops at the next one; 3© Run the above steps repeatedly until
the program is terminated or exceeds a time limit. It is obvious that
any potential thread interleaving could be picked by this approach.
During tracing, the input used by the target program is not the

seed input but a randomly mutated one. The mutated input used in

exploring different thread interleavings and inputs. Long-
running programs do not fit them.

We select the baseline programs mainly from PARSEC [5] and
SPLASH-2 [30] datasets to build the benchmark. More details of
these programs are available in §4.1. We consider each selected
program as a target program for further concurrency bug injection.

3.3 Execution Trace Recording
To ensure that the generated bugs are triggerable, RaceBench records
an execution trace and makes it the base to inject buggy code. The
trace records a real thread interleaving of the target program. By
following the trace, we can make sure that the program can reach
and execute the injected code in order.

RaceBench records a trace of the target program by running it
under a debugger. The scheduler of the operating system is locked
by the debugger, so only a single thread of the program is able
to run at the same time. A trace can be obtained by taking the
following steps: 1○ Randomly select one of the threads waiting to
be executed; 2○ Let the selected thread execute a single statement
and stops at the next one; 3○ Run the above steps repeatedly until
the program is terminated or exceeds a time limit. It is obvious that
any potential thread interleaving could be picked by this approach.
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During tracing, the input used by the target program is not the
seed input but a randomly mutated one. The mutated input used in
tracing will become an answer for bug discovery tools to find out (if
they need to). Notice that it will not be beneficial for bug discovery
tools to use the same scheduling or mutation strategy as ours. We
obtain the random seed from the operating system dynamically,
and a different seed will lead to a different and irrelevant synthetic
bug.

A trace is denoted as an ordered list of items, each of which
represents one statement to be executed. Each item is denoted as a
tuple <tid, loc>, where tid is the unique ID of the running thread
and loc is the location (file name and line number) of the source
code being executed. Table 3 shows an example execution trace of
the aforementioned running example. We omit the file names in
loc for simplicity as we only have one file in this case.

3.4 Bug Location Selection
A concurrency bug exists only if the vulnerable code can run in
different orders, and only triggers in certain special orders. Thus,
we choose to add the bug core to a pair of locations (called a race
pair) that can be executed by two threads concurrently. When two
threads reach the locations at the same time, either part of the code
can run first, so the outcome will depend on the execution order.

Then the question is how to find such race pair locations. The
clues are in the execution trace. For each item in the trace, RaceBench
looks for previous items that have a different thread ID. Such items
are able to execute concurrently, and thus suitable for injecting
bug core. The preconditions are also injected before the bug core.
Table 3 shows the newly identified race pairs for each trace item.

Some bug cores can make use of multiple race pairs. If there are
two operations (𝑜𝑝𝑥 and 𝑜𝑝𝑦 ) to be performed in one thread, both
𝑜𝑝𝑥 and 𝑜𝑝𝑦 should be able to run concurrently with an operation
𝑜𝑝𝑧 in the other thread, but 𝑜𝑝𝑥 and 𝑜𝑝𝑦 do not have to be adjacent.
In real bugs, there can be other code in the middle of the two
operations. To imitate this scenario, we can find a neighboring race
pair that shares a common trace item with the current race pair, so
that 𝑜𝑝𝑧 can be placed in the common trace item. For example, in
Table 3, (8, 7) and (10, 8) are neighboring race pairs because they
share an item 8, and 𝑜𝑝𝑥 , 𝑜𝑝𝑧 , and 𝑜𝑝𝑦 can be placed at 7, 8, 10
respectively.

However, simply finding a second race pair in this way may
introduce unexpected solutions to the injected bug. Although the
second operation 𝑜𝑝𝑦 is after the first one 𝑜𝑝𝑥 in the current trace, it
may not be so in other possible traces. For example, if the program
in Figure 4 is able to reach lines 15–17 without executing lines 8–9
(via other paths), the assumption can be broken nomatter the thread
interleaving. To guarantee the injected bug is a concurrent bug,
RaceBench only picks locations having domination relationship [25]
as candidates to inject dependent operations.

Specifically, based on the characteristics of different code pat-
terns, as shown in Figure 1 and Figure 2, we find different code
patterns require different domination dependency.

• None: The code does not have two operations to be per-
formed in one thread. Bugs of the code pattern NoWait could
use this domination.

• Pre-Dom: The former operation 𝑜𝑝𝑥 should dominate the
latter operation 𝑜𝑝𝑦 , i.e., every path from the entry to 𝑜𝑝𝑦
should go through𝑜𝑝𝑥 . Bugs of the code pattern RWA,WWA,
and Sleep could use this domination.

• Post-Dom: The latter operation 𝑜𝑝𝑦 should post-dominate
the former operation 𝑜𝑝𝑥 , i.e., every path from 𝑜𝑝𝑥 to the
exit should go through 𝑜𝑝𝑦 . Bugs of the code pattern WAW
and Reorder could use this domination.

Then, we analyze the dominator tree of target programs with the
LLVM [14] compiler, and select race pairs of different domination
relationships and inject bugs of corresponding code patterns.

Further, RaceBench randomly selects multiple locations before
the race pairs, to insert the prologue code (of multiple code snippets)
that initializes the program state used by the precondition and the
bug core. Apart from initialization, the prologue is also responsible
for adjusting the difficulty of the bug. Because there are multiple
prologue locations and each is selected from any thread, the more
prologue locations we select (and split the prologue code to each
location), the more complex the expected thread interleaving that
accomplishes the prologue setting becomes. Table 3 marks these
locations with a gray frame.

3.5 Bug Code Generation
RaceBench can generate atomicity violation and order violation
bugs caused by wrong program state assumptions. The bug model-
ing code patterns described in §2.3 will be used to produce the bug
cores, which are representative of the core defective code in real
bugs. To integrate the bug core into the target program, RaceBench
also adds peripheral code that prepares the program states and
forms preconditions, which helps to grasp constraints in the origi-
nal control flow of the program.

To produce a concurrency bug, there are three types of operations
to be added to the source code.
Variable Assignment. Transform the program state by assigning

the shared variables.
Conditional Check. Check if the current program state is the

expected one.
State Assertion. This is a more critical conditional check. Once

an assertion fails, RaceBench recognizes that a bug has been
triggered.

These operations are the building blocks for the prologue, the
precondition, and the bug core. The prologue is implemented as
a series of assignments. The precondition is a set of conditional
checks placed in the front of each code piece of the bug core. The
bug core is generated by substituting the variables and statements
in the code patterns with concrete ones, which can involve all three
kinds of operations.

For example, in Figure 4, the prologue assigns 𝑣𝑎𝑟0 with an input
byte and assigns 𝑣𝑎𝑟1 with an expression that accumulates values
of 𝑣𝑎𝑟0. The precondition becomes the identical conditional checks
at line 8, 11 and 15, which guard their following bug core code
by checking the value of 𝑣𝑎𝑟1. The bug core is generated from the
WWA pattern. The two write operations in Figure 1a2 become
two assignments to the same variable 𝑣𝑎𝑟2, and the program state
assumption becomes an assertion at line 16 that checks if 𝑣𝑎𝑟2 has
the assumed value.
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The values of the assignments are computed from randomly
chosen operations, including addition, subtraction, exclusive-or, etc.
The operands can be immediate numbers, input data, or variables
in the current program state. If the input data is used, it indicates
that the bug is only triggerable under certain inputs. A variable
can be assigned by different threads for multiple times, so its value
becomes interleaving dependent.

Although we do not use the original variables in the target pro-
gram (because we cannot control their values), RaceBench uses the
data in the target program implicitly. As the bug codes are injected
along the trace, they inherently keep the path constraints in the
target program. The example bug in Figure 4 is closely related to
the original control flow of the program. A part of the bug code
is placed under an if condition that specifies a constraint on the
xor-sum of array arr’s elements.

The conditional check takes one variable from the program state
and checks whether it is the expected value. It is not necessary
to test many variables in one check, because we can always use
assignments beforehand to blend the values of different variables.

The assertions are realized in two ways. The trivial way is to call
a bug_trigger function if the assumption is broken. The argument
of the function is a bug ID, indicating which bug has been triggered.
Inside bug_trigger, RaceBench records the bug ID, and then aborts
or continues the program according to configurations. Another type
of assertion is used to implement combined assumptions, where the
falsely assumed program state can be saved into a program state
variable to be used later. This will be explained in Appendix A.

Given the generated code, RaceBench simulates the code to get
the expected program state for each trace item. The expected pro-
gram state is used to fill the conditional checks with correct values.
During simulation, RaceBench walks along the trace, maintains the
current program state, and runs the generated operations at the
current location to compute the next state. We should not inject
and simulate the code at the same time, because the code locations
can also appear earlier in the trace. Therefore, RaceBench walks
through the trace for two passes: in the first pass, it decides what
code to generate; and in the second pass, it performs the simulation.
The simulated program states of the example code are listed in
Table 3.

Finally, the generated code is inserted to the source code through
textual modification. RaceBench rewrites the source code in a uni-
form format to avoid syntax errors during code insertion. This
method simplifies the implementation of RaceBench toolset.

4 EVALUATION
We utilized RaceBench to construct a concurrency bug benchmark,
and used it to evaluate the performance of existing concurrency bug
discovery tools. The following research questions will be discussed:

RQ1: Efficiency of RaceBench. How long does it take to inject
bugs? What is the overhead of the additional code?

RQ2: Bug difficulty. How hard is it to find the bugs?
RQ3: Bug representativeness. To what extent can the generated

bugs represent real bugs?
RQ4: Performace of tools. How well do existing tools work on the

benchmark generated by RaceBench?

Table 4: Bug injection time and runtime overhead.

Program Average bug
injection time (s)

Running time (∗10−3s)
without bugs with bugs overhead

blackscholes 9.96 0.83 1.21 44.7%
bodytrack 60.47 26.66 27.89 4.6%
canneal 44.73 1.30 2.09 60.5%
cholesky 68.08 7.98 17.58 120.3%
dedup 24.46 14.82 21.30 43.7%
ferret 25.91 4.41 6.26 42.0%
fluidanimate 35.20 14.67 37.76 157.4%
pigz 24.42 0.56 0.82 47.6%
raytrace 76.05 3.76 6.32 67.8%
raytrace2 71.06 23.67 89.49 278.1%
streamcluster 121.93 36.88 41.62 12.9%
volrend 20.18 3.63 14.54 300.7%
water_nsquare 31.68 31.52 40.43 28.3%
water_spatial 26.20 26.92 33.23 23.4%
x264 31.91 3.42 16.28 376.3%

4.1 Building Benchmark
We build a benchmark RaceBench to be used in the evaluation.
Based on the multithreaded programs from the PARSEC [5] and
SPLASH-2 [30] datasets, we manually check their properties ac-
cording to §3.2 and finally select 15 target programs. More details
are in Appendix B.

We add 100 concurrency bugs to each target program. Notice
that our approach does not have limitations on the number of
bugs. While injecting bugs, we save the proof-of-concept input files
and thread interleavings, so the users can verify that the bugs are
triggerable.

Because the programs contain a large number of bugs, the users
may want to choose a subset of bugs to evaluate their tools. There-
fore, we set preprocessor macros to control which bugs to enable.
When a bug is triggered, the behavior of RaceBench can also be
configured via macros. RaceBench can either abort the program
immediately or continue running to try to trigger more bugs. Each
injected bug uses a unique set of program state variables, so the
bugs will not interfere with each other.

RaceBench also provides a reproducer script. Given an execution
trace as described in §3.3, the script runs the target program and
schedules the threads as specified by the trace, until it reaches a
bug. It can be used to verify bugs found by bug discovery tools.
We highly encourage such tools to record the scheduling order if
possible. Although such data is not a necessity to use the benchmark,
they are very helpful for programmers to reproduce the bugs.

The injected bugs generally have no impact to the functionality
of the target program, except for some runtime overhead and the
deliberate program abort when bug is triggered. Because RaceBench
does not modify the original program variables, and the bug code
it generates does not contain waiting statements that could cause
deadlocks if inserted into critical sections.

4.2 Efficiency of RaceBench
We assess the average time cost of injecting one concurrency bug.
The results are listed in Table 4. The majority of time is spent on
recording the execution trace, so the cost is mostly determined by
the size and the computational complexity of the target program.
As we record a different trace for every single bug, the total time to
build a benchmark is proportional to the number of bugs to add. On
average, our system can inject a bug within one minute, efficient
enough for the purpose of building benchmarks.
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Figure 5: Interleaving depth and the percentage of bugs found
by different bug discovery tools. RaceBench uses the left y-
axis, and bug discovery tools use the right y-axis.

To evaluate the runtime overhead of the bugs, we gather the
execution time of the target programs before and after injecting
bugs. In Table 4, we can see that different target programs have
quite different overheads, ranging from 4.6% to 376.3%. This is
because the overhead depends on the injection locations. If the bug
code is injected into a busy loop, the code will be executed many
times. Target programs with a lot of loops are more likely to have
a large overhead. It also depends on the code pattern. If the code
uses time-consuming statements, such as lock and sleep, it will
have a larger runtime overhead.

4.3 Bug Difficulty
The difficulty of a concurrency bug is measured by the interleaving
depth and the thread switching window size.

Interleaving depth is the number of thread switches needed to
trigger the bug [7]. The more interleavings a bug has, the more
difficult for tools to find the correct thread execution order because
the possible ways to combine the threads can grow exponentially.
In RaceBench, the interleaving depth is determined by the number
of threads selected in the prologue and the bug core, so it is con-
trollable. As shown in Figure 5, our dataset covers a wide range of
interleaving depths, which we consider to be adaptive for bug dis-
covery tools of different capabilities. We also draw the percentage
of discovered bugs according to their interleaving depths. We can
see a slightly decreasing trend in discovered bugs as the number of
thread switches increases.

The window size of thread switching is also an indicator of
concurrency bug difficulty. As the window size decreases, the prob-
ability of thread switching within the window also decreases, so
the bug becomes harder to find. We measure the window size by
calculating the distance of selected items belonging to different
threads in the trace. One trace item usually corresponds to one line
of source code. Figure 6 shows distribution of the distance between
adjacent prologue locations and the distance between the prologue
and the bug core. As shown in the figure, the window sizes mostly
range from 5 to 100 trace items.

A bug in RaceBench can have many thread switching windows.
To estimate the bug difficulty of different window sizes, we con-
figure the system to generate some bugs with fixed the window
sizes of 2, 5, 50 and 500, for both previously mentioned distances.
We run each of these speically configured programs without any
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Figure 6: Thread switchingwindow size and the percentage of
triggered bugs in diffculty test. The distribution of distances
in RaceBench uses the left y-axis, and the diffculty test uses
the right y-axis.

bug discovery tools, continuously test for one hour, and count the
number of triggered bugs in Figure 6, We can see that bugs with
smaller window sizes are harder to be triggered.

Besides, trace depth is another metric used by the LAVA [9]
dataset to estimate the bug difficulty. We will discuss about this in
Appendix C.

4.4 Bug Representativeness
It is rather subjective to judge whether a generated bug is repre-
sentative. We use some metrics to evaluate the representativeness
of the bugs:
Bug pattern variety. The more bug patterns that can be gener-

ated, the more representative they are of real bug types.
RaceBench can cover about 69% concurrency bug types ac-
cording to our empirical study (discussed in §2.2.3).

Interleaving depth. Lu’s study [21] shows that 92% concurrency
bugs can be triggered if certain partial order among no more
than 4 memory accesses is enforced. In RaceBench, the gen-
erated bugs mostly require 3–6 thread switches to trigger,
and can be adjusted based on configuration.

Number of involved threads. We have only modeled bug code
patterns of two threads, so the generated bug core can only
involves two threads. However, according to Lu’s study [21],
96% concurrency bugs are guaranteed to manifest if certain
partial order between 2 threads is enforced.

4.5 Performance of Existing Tools
We evaluate five automatic bug discovery tools on RaceBench.

• OpenRace [28], a static program analysis framework aiming
to detect data races.

• AFL++ [22], a widely used fuzzer that combines state-of-the-
art fuzzing techniques. It does not have special treatments
for concurrency bugs.

• ConAFL [18], a thread-aware fuzzer that controls the thread
scheduling of the target programs.

• TSan (ThreadSanitizer) [27], a compiler instrumentation
module that detects data races during run-time.

• Maple [32], a concurrent program testing tool that dynami-
cally explores thread interleavings with race pair coverage
heuristics.

423



ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Jiashuo Liang, Ming Yuan, Zhanzhao Ding, Siqi Ma, Xinhui Han, and Chao Zhang

Table 5: Number of bugs discovered by tools.
OpenRace AFL++ ConAFL TSan Maple

blackscholes 1 39 1 43 36
bodytrack 0 54 0 77 8
canneal 5 58 0 85 58
cholesky Error 55 6 91 34
dedup 84 77 0 83 24
ferret 0 92 0 93 62
fluidanimate 10 85 4 91 58
pigz Error 87 0 94 95
raytrace 0 56 1 87 44
raytrace2 Error 61 1 85 62
streamcluster 5 Error Error 96 20
volrend Error 50 0 98 20
water_nsquare Error 31 0 44 3
water_spatial Error 76 4 96 42
x264 Error 77 2 83 67

total 105 898 19 1246 633

We mark some cells as Error if the tool results in errors by itself.

The experiments are conducted on Intel Core i7-11700 16-thread
CPUs. We run the above tools referring to their respective usages.
For fuzzers (AFL++ and ConAFL), we fuzz each target program for
48 hours. Instead of relying on their reports, we count the discov-
ered bugs with RaceBench’s logs. Before ConAFL starts fuzzing, it
requires the user to mark potential races in the source code (with
any static race analysis tools). To avoid any biases resulting from
static analysis, we directly provide it the correct race pairs. Open-
Race and TSan analyze the target programs and report any detected
potential races. We compare their outputs with RaceBench’s code
locations. If all locations of the race pairs of a bug are covered,
we consider the bug is found out. Maple keeps running the target
program in different thread interleavings until the program crashes.
Both Maple and TSan require a given input to start the program.
So we directly provide them with the correct input files, let them
test for a maximum time of 48 hours, and check what bugs have
been triggered.

4.5.1 Number of bugs discovered. The number of discovered bugs
for each tool is listed in Table 5. TSan discovers 83.1% bugs and
outperforms others. But it also reports lots of races in the target
programs beyond RaceBench’s bug list, and we have no way to
verify without huge manual effort, so we only evaluate the recall
rate. AFL++ discovers 59.9% bugs. However, as a general fuzzer,
AFL++ does not record any kinds of scheduling or interleaving
order, so its reports are not that helpful to reproduce and diagnose
concurrency bugs. Maple guarantees that the reported bugs can
be reproduced. During the experiments, we notice that Maple has
a significant runtime overhead (about 200 times slower), which
explains why it only discovers 42.2% bugs. OpenRace analyzes fast
but it crashes itself on some programs, resulting in a low recall rate
of 7.0%. ConAFL does not perform well as it only discovers about
1.3% bugs. We will dig into the reasons of its poor performance
later in §4.5.2.

Figure 7 plots the number of discovered bugs over time. We
can see that most bugs are found in the first few hours. In longer
testing times, these tools are able to trigger a few more bugs, but
the ranking of these tools does not change with the testing time.

As shown in Table 6, the performance of the evaluated tools
is greatly affected by the bugs’ code patterns. Because the tools

Figure 7: Number of discovered bugs over time.

Table 6: Percentage of discovered bugs of different bug code
patterns.

OpenRace AFL++ ConAFL TSan Maple

Atomicity
Violation

RWA 6.1% 68.6% 2.2% 91.9% 44.1%
WWA 8.3% 64.7% 0.5% 93.8% 46.0%
WAW 6.1% 64.9% 1.0% 92.3% 49.6%

Order
Violation

NoWait 0.0% 68.2% 0.0% 81.8% 59.1%
Sleep 6.9% 54.2% 8.3% 79.2% 41.7%

Reorder 2.3% 77.8% 5.6% 88.9% 55.6%

define their own rules (e.g., certain memory access patterns and
thread API sequences) to recognize bugs, if a rule matches a bug
code pattern well, hopefully, it will discover more bugs of that
type. Also, different bug patterns in RaceBench can have different
difficulties. The performance of AFL++ may be a good reference
for estimating the difficulty of bug patterns, because it does not
apply any concurrency-specific rules during testing.

4.5.2 Case Study. We pick ConAFL as a key to understand why
existing tools have poor performance.

The evaluated tools are designed for different scenarios. ConAFL
chooses a task that is more difficult but more realistic than oth-
ers. While AFL++ just cares about searching for ill-formed inputs,
OpenRace, TSan, and Maple focus purely on thread interleavings,
but ConAFL aims to find out the inputs and thread interleavings
together to trigger the bugs. How to balance the cost of exploring
input space and thread interleaving space is a great challenge to be
addressed in future studies on concurrency bugs.

After diving into its implementation, we find that ConAFL ap-
plies for a fixed interleaving order at the potential race pair loca-
tions, trying to trigger the bugs. This behavior largely constrains
the thread interleavings it can explore, so it may ignore some cru-
cial interleavings. Moreover, it sometimes leads to a deadlock-like
situation, where a bug requires Thread 1 to run before Thread 2
but another bug requires Thread 2 to run before Thread 1, making
no progress and blocking the program.

4.5.3 Insights on Future Directions. Based on the evaluation, we
would like to highlight a few insights on future directions of how
to improve concurrency bug discovery tools.
Reproducibility: It is still hard for developers to locate the con-

currency bug even if the program inputs and crash sites
are given, because the essential thread interleaving orders
are missing. Among the tools evaluated in our paper, only
Maple provides support for reproducing the reported bugs.
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Scheduling strategies: A better way to schedule the threads is
demanded, in order to explore more thread interleavings
without introducing deadlocks or high runtime overheads.
We suggest adopting a soft thread scheduling strategy, e.g.,
using a probabilistic model or a more systematic approach
rather than a hardcoded thread priority, so that all possible
interleavings have a chance to be tested.

Combining input space and thread interleaving space: Both
inputs and thread interleaving orders are important for con-
currency bugs in the real world, because some interleavings
are only feasible under ill-formed inputs. Thus, tools should
coordinate the search strategies of both the input space and
thread interleaving space. It will be good for tools to combine
them and consider their effects on each other.

5 RELATEDWORKS
Existing concurrency bug benchmarks can be classified into historic
bug datasets and synthetic bug datasets. In this section, we will
introduce typical works about concurrency bug benchmarks. Due
to the space limit, we put related works about concurrency bug
discovery tools in Appendix D.

5.1 Historic Concurrency Bug Benchmarks
Such benchmarks are built and validated with great human efforts,
so they are usually limited in size. JaConTeBe [17] contains 47 con-
firmed bugs from 8 Java projects. GoBench [33] provides 82 real
bugs from 9 applications in the Go language. DataRaceBench [16]
contains 72 small programs written with the OpenMP library, in-
tended to evaluate race detection tools. For native C/C++ pro-
grams, RadBench [11] consists of 10 real concurrency bugs in large
projects, such as Apache web server and Chromium web browser;
BugBench [20] is a general bug benchmark that includes 4 related
to concurrency issues; and [31] also provides 20 real concurrency
bugs used in its evaluation.

These historic concurrency bugs are collected from software
issue tracking platforms, so they do not appear in a common ver-
sion of the program, and moreover, they may require complicated
configurations and inputs (e.g., network) to run, making them hard
to be automated in concurrency bug discovery tool evaluation.

5.2 Automatic Bug Injection
LAVA [9] firstly proposes the idea of building datasets with syn-
thetic bugs that can be triggered with certain inputs. Although
it does not focus on concurrency bugs, it gives us the inspiration
that bugs injected along an execution trace are guaranteed to be
triggerable. FixReverter [34] searches for bugfix patterns in the
source code and reverts them to reintroduce non-concurrent bugs.
According to [21], “73% non-deadlock bugs are fixed by techniques
other than adding/changing locks”, so we think concurrency bugfix
patterns can be too complicated to revert.

For concurrency bugs, CCMutator [13] mutates the usage of
thread-related APIs to generate buggy code, such as switching the
order of lock statements and erasing thread synchronizations. It
enables mutation testing for multithreaded programs. But not all of
these mutations can become bugs, and the mutated statements may
not be reachable, thus not triggerable. DRInject [15] automatically

injects data race bugs. With the help of dynamic debugging, it
finds code locations that can be concurrently executed. Additional
code at these locations will access a global variable to make a data
race, which belongs to our Read-Write-Assume code pattern. Some
code injected by DRInject are benign races instead of observable
bugs, because it only intends to evaluate race detectors which are
designed to report any possible races, no matter the reported bugs
are false positives or not.

6 DISCUSSION
6.1 Bug Categorization
During the empirical study, we find some concurrency bugs lacking
descriptions or too hard to understand. So there could be other
bug types, causes, or complicated code patterns beyond our list.
RaceBench is only able to generate concurrency bugs caused by
wrong program state assumptions. We have modeled bug code
patterns involving only two threads. We leave it as future work to
cover more bug patterns and concurrency bugs related to multiple
threads.

6.2 Biases
Concurrency bugs synthesized by RaceBench can be biased to some
degree. For instance, we only use input-needed and short-lived tar-
get programs, but real concurrency bugs can also exist in programs
that do not require input or run for a long time. Apart from that,
RaceBench crashes the target program to indicate a bug has been
triggered, but concurrency bugs can also have other outcomes, such
as hangup and wrong output. Actually they are features intention-
ally introduced, because many bug discovery tools rely on them,
and we hope the dataset be usable for more tools. As stated earlier,
rather than making the synthetic bugs representative in all aspects,
we mainly focus on their root causes and code patterns, which are
more essential parts of concurrency issues.

6.3 Bug Injection Approach
The trace-based approach enables RaceBench to inject triggerable
concurrency bugs, but it also has some drawbacks. Concurrency
bug discovery tools do not have to exactly follow our trace to find
the bugs. This is intended but it makes us unable to fully control
bug difficulty. Moreover, RaceBench may have a higher probability
to inject code inside loops because they appear more frequently in
the trace. To mitigate it, RaceBench only keeps a certain number of
looping locations in the trace according to user configurations.

6.4 Report Precision of Tools
Sometimes the bug discovery tools report bugs that do not belong
to the dataset, they may be original bugs in the target program,
benign data races, or even false alarms. Because RaceBench only
verifies its own bugs, the dataset constructed in this paper can only
be used to evaluate the recall rather than the precision of tools. We
think this is an intrinsic problem of synthetic bug benchmarks.

7 CONCLUSIONS
In this paper, we propose an automated approach RaceBench to au-
tomatically inject concurrency bugs into multithreaded programs.
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Based on a large-scale empirical study, we build models to represent
the code patterns of concurrency bugs caused by wrong program
state assumptions. RaceBench generates buggy code according to
the patterns and injects them along an execution trace to make the
bugs triggerable. We construct a dataset with 15 real-world pro-
grams, and use it to evaluate four concurrency bug discovery tools
and one general fuzzer. Experiments show that there is still a large
room for existing techniques to improve accuracy, reduce runtime
overhead, and find strategies to balance the cost of exploring input
space and thread interleaving space. Our benchmark also sheds
light on the future direction of improvements in concurrency bug
discovery. We have open-sourced RaceBench and hope they can
help improve automatic concurrency bug discovering techniques.
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A COMBINED ASSUMPTIONS
Sometimes a concurrency bug is the result of multiple assumptions
in the code. The core of such complex bugs can be regarded as the
combination of multiple code patterns. During the empirical study,
we find two types of combination: chaining and nesting. When
chaining two assumptions, the second one is breakable only after
that the first one has been broken (outside its race window4). Nest-
ing has a stricter condition that the second assumption is available
only inside the race window of the first one. When entering the
race window, a thread gives chances to access the wrong program
state, and when the race window is closed, the chances disappear.
RaceBench can generate combined assumptions by saving the as-
sumed condition in a variable and using it to affect the next assump-
tion. As shown in the example in Figure 8, the wrong assumption
of WAW pattern is saved in 𝑣𝑎𝑟2. In chaining, 𝑣𝑎𝑟2 is used after the
first race finishes. In nesting, 𝑣𝑎𝑟2 is used inside the race window.
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1 /*init*/ S t a t e .var_1 = 0;

2 S t a t e .var_1 = 1;

3 // assume

4 S t a t e .var_2 =

5 S t a t e .var_1 == 0 or

6 S t a t e .var_1 == 2;

7 S t a t e .var_1 = 2;

8 next( S t a t e .var_2);
9 next( S t a t e .var_2);

(a) Chaining

1 /*init*/ S t a t e .var_1 = 0;

2 S t a t e .var_1 = 1;

3 // assume

4 S t a t e .var_2 =

5 S t a t e .var_1 == 0 or

6 S t a t e .var_1 == 2;

7 if ( S t a t e .var_2)
8 next();

9 next();

10 S t a t e .var_1 = 2;

(b) Nesting

Figure 8: Examples of combined assumptions.

B TARGET PROGRAMS
We collect programs mainly from the PARSEC [5] (version 3.0) and
SPLASH-2 [30] datasets. These datasets contain a variety of multi-
threaded programs originally used to measure the performance of
multicore machines. We list the details of each program in Table 7.
The RaceBench dataset provides the both programs before and after
adding bugs. We also tried our best to fix some bugs that originally
existed in these programs.

Table 7: Target programs in RaceBench.

Name From #Lines #Threads Category

blackscholes PARSEC 512 4 Finance
bodytrack PARSEC 9,728 5 Body Tracking
canneal PARSEC 4,538 4 Chip Design
cholesky SPLASH-2 5,239 4 Matrix Computation
dedup PARSEC 5,210 12 Compression
ferret PARSEC 15,745 7 Similarity Search
fluidanimate PARSEC 5,712 5 Animation
pigz Internet 8,406 6 Compression
raytrace PARSEC 29,031 5 Raytracing
raytrace2 SPLASH-2 11,491 4 Raytracing
streamcluster PARSEC 2,531 9 Clusterization
volrend SPLASH-2 18,112 4 Volume Rendering
water_nsquared SPLASH-2 2,053 4 Fluid Simulation
water_spatial SPLASH-2 2,680 4 Fluid Simulation
x264 PARSEC 35,535 6 Video Encoding

4A race window is a small period in which the instructions of two threads are racing.

C TRACE DEPTH
The idea of trace depth originates from the LAVA [9] bug dataset. It
is measured by the proportion of statements in the trace to be exe-
cuted to reach the bug locations. If the proportion is small, the bug
is placed near the entrance of the program, so it is easily reachable.
If the proportion is large, to find the bug, tools have to correctly
diagnose a lot of instructions, so it is likely to be hard. Figure 9
shows the distribution of bugs over different trace depths in our
dataset. Users can control the trace depth by tweaking RaceBench’s
location selection strategy. The distribution is also affected by the
internal structures of the target programs. For example, the pro-
gram may not create many threads when it just starts, so we have
fewer bugs injected near the entrance.

In Figure 9, we also draw the percentage of discovered bugs
according to their trace depths. There does not seem to be a clear
relationship between the trace depth and the difficulty as claimed
by LAVA. We think that the proportion in trace does not directly
reflect how hard it is to reach the selected locations. For example,
the dominator nodes in the control flow graph of a target program
are always reachable, but they can be scattered anywhere in the
trace, even near the exit (depth=1).

Figure 9: Trace depth and the percentage of bugs found by
different bug discovery tools. RaceBench uses the the left
y-axis, and bug discovery tools use the right y-axis.

D CONCURRENCY BUG DISCOVERY TOOLS
Race detection tools find data races by investigating shared memory
accesses and synchronization events. The program is either ana-
lyzed statically without actually running it [6, 28, 29], or monitored
dynamically during runtime [1, 27]. The commonly used techniques
are: (1) point-to analysis [6, 28] that checks whether accesses from
two threads can point to the same memory location, (2) happens-
before analysis [6, 27, 28] that checks whether statements have to
be executed in certain orders, and (3) lockset analysis [1, 27, 28]
that checks whether operations are properly protected by locks.
As these applied analyses often broaden the range of possible data
flows, race detectors report a large number of potential races but
usually suffer from a high false positive rate.

Thread scheduling approaches search for a specific execution
order to trigger concurrency bugs. PCT [7] scheduling algorithm
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provides a mathematically proven probability to trigger concur-
rency bugs. Dthreads [19] schedules threads in a deterministic
way by replacing the pthread library to make concurrency bugs
reproducible. Maple [32] controls scheduling by adjusting threads’
priority and uses a coverage-guided heuristic to explore execution
orders.

Mutation-based fuzzing has also been applied to automatically
discover concurrency bugs. They often adopt the previously de-
scribed approaches in a hybrid manner. As far as we know, Race-
Fuzzer [26] is the first fuzzer for race conditions. It combines race

detection with a randomized thread scheduler and focuses on sep-
arating harmful races from benign races. ConAFL [18] combines
static analysis and fuzz testing. It uses static analysis to locate sen-
sitive concurrent operations and determine the buggy execution
order to be tested. Muzz [8] applies thread-aware instrumentations
that collect thread interleaving coverage and thread context infor-
mation. All of these fuzzers are evaluated by self-chosen programs.
RaceFuzzer is implemented for Java programs and Muzz is not
publicly available, so they are not included in our evaluation.
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