
1

A Credential Usage Study: Flow-Aware Leakage
Detection in Open-Source Projects

Ruidong Han , Huihui Gong, Siqi Ma , Member, IEEE, Juanru Li, Member, IEEE, Chang Xu, Elisa Bertino,
Fellow, IEEE, Surya Nepal , Senior Member, IEEE, Zhuo Ma , Member, IEEE, and JianFeng Ma ,

Member, IEEE

Abstract—Authentication and cryptography are critical secu-
rity functions and, thus, are very often included as part of code.
These functions require using credentials, such as passwords,
security tokens, and cryptographic keys. However, developers
often incorrectly implement/use credentials in their code because
of a lack of secure coding skills. This paper analyzes open-source
projects concerning the correct use of security credentials. We de-
veloped a semantic-rich, language-independent analysis approach
for analyzing many projects automatically. We implemented a
detection tool, SEAGULL, to automatically check open-source
projects based on string literal and code structure information.
Instead of analyzing the entire project code, which might result in
path explosion when constructing data and control dependencies,
SEAGULL pinpoints all literal constants to identify credential
candidates and then analyzes the code snippets correlated to these
candidates. SEAGULL accurately identifies the leaked credentials
by obtaining semantic and syntax information about the code.
We applied SEAGULL to 377 open-source projects. SEAGULL
successfully reported 19 real-world credential leakages out of
those projects. Our analysis shows that some developers protected
or erased the credentials in the current project versions, but
previously used credentials can still be extracted from the
project’s historical versions. Although the implementations of
credential leakages seem to be fixed in the current projects,
attackers could successfully log into accounts if developers keep
using the same credentials as before. Additionally, we found that
such credential leakages still affect some projects. By exploiting
leaked credentials, attackers can log into particular accounts.

Index Terms—credential leakage, bug detection, static code
analysis

I. INTRODUCTION

CREDENTIALS, such as authorization passwords, secu-
rity tokens, and cryptographic keys, are crucial for secur-

ing accounts, protecting data stored in databases, and message
transmission. Therefore, it is essential to protect against leak-
age. However, most developers only recognize the importance
of building secure authentication schemes (e.g., multifactor
authentication) or transmission protocols (e.g., TCP/IP) but
ignore the protection of credentials, which are often hardcoded
in plaintext in source code. Most research works [1], [2]
focus mainly on exploiting protection schemes instead of
analyzing whether the involved credentials are declared and
used correctly. Recent password guessing studies [3], [4], [5],
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[6] indicate that attackers can exploit these leaked credentials
to guess a user’s other software/application credentials within
an acceptable number of attempts. Furthermore, in the context
of open-source or reused programs, other developers may refer
to the design and implementation of the code, unknowingly
exposing their credentials.

Therefore, we aim to conduct a security analysis to assess
whether security credentials are protected and used correctly
in project source code. Such an analysis is critical because
it can help developers strengthen secure code practices with
guidelines concerning the correct use of security credentials
and reinforce the need to adopt these practices.

Concerning credential usage, we focus on widely used
passwords and security tokens in this work. In this paper, the
passwords consist of manual passwords, random passwords,
and seed keys; the tokens consist of cryptographic keys and
verification keys. Leakages of secret keys have been investi-
gated in previous work [7], [8], [9], [10], which emphasizes
the need for adopting good security practices when using
credentials. Similarly, it is essential to note the correct and
incorrect ways of using different credentials. For example,
passwords used for identity verification should always be
strongly protected and stored, along with the corresponding
usernames, in local/remote databases. Unlike passwords, se-
curity tokens utilized for data transmission protection should
be generated by cryptographically secure pseudo-random gen-
erators [11] and transmitted to the user/application via secure
communication protocols.

Previous work [12], [13], [14], [15], [16] has addressed the
problem of detecting credential leakage issues in open-source
projects. Nonetheless, these approaches mainly rely on manu-
ally summarized rules and patterns to identify leakages in code
or detect vulnerable patterns in credential usage. For example,
Sonar-Java [15] has 600+ rules to assist in the detection of
credential issues in Java code, and Bandit [16] uses AST trees
to detect credential problems in Python code. Nonetheless,
these approaches are typically limited to a specific program-
ming language. Therefore they are not generally applicable to
mixed open-source projects that implement different portions
of code with different programming languages (e.g., C/C++,
Python, and Java). The reason for using different programming
languages is that a single language is often not the best fit for
implementing certain code functions [17]. Therefore, recent
research [18], [19], [20] has focused on designing tools for
analyzeing open-source projects with code written in multiple
languages. To address the challenges arising from differences
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in code logic, these approaches consider the entire source code
as text due to the use of different languages. Then they use
natural language processing to extract semantic and syntactical
information from the source code. Although the application
scope of these approaches can be extended, handling the
entire source code as readable text leads to large numbers of
inaccuracies in the analysis because the text obtained from the
code may include nonhuman language words or combinations
of words such as def, abs and getSrcFrom.

To address the lack of accuracy of the existing approaches,
we implement a novel dual-model machine learning enhanced
classification and detection approach that is programming
language independent. Our approach consists of two ma-
jor components: a credential classifier and a flow context
classifier. In our approach, we first transform the project’s
source code under analysis into a semantic-rich, language-
independent form consisting of string literal and code structure
information. We use the credential classifier to classify string
literals into credential candidates and ordinary strings to detect
credentials. As a simple text analysis might result in high
numbers of false-positives and false-negatives, we apply the
flow context classifier to analyze the data and control flows
correlated to the credential candidates to identify the sensi-
tive activities. Sensitive activities use credentials for remote
connection, authentication, and encryption. We then check
whether the credentials are correctly used in these sensitive
activities.

We implement SEAGULL, a credential leakage detection
tool, and apply it to open-source projects. SEAGULL suc-
cessfully detects 19 credential leakages out of 377 projects
written in different programming languages and various his-
torical versions. We also compare SEAGULL with the state-
of-the-art language-independent analysis tools PassFinder,
Detect-Secrets, and Gitleak. The detection results show that
SEAGULL has the highest F1-score, 87.96%, and effectively
identifies credential leakages in code written in various pro-
gramming languages. Interestingly, SEAGULL identified two
credential leakages from the historical versions of two projects,
which have been fixed in the latest projects. We emailed
project developers to confirm whether the credentials in the
historical versions were still valid. One of the developer’s
comments was that the credential was still valid and then
the developer disabled it. This result emphasizes that patching
credential leakages in open-source projects requires ensuring
that patches are also applied to the historical versions if these
versions are accessible or abandoning credential usage forever.

Contributions:
• We design a novel cross-language approach for detect-

ing credential leakages from diverse open-source projects.
Unlike other cross-language analyses, we extract literal
constants and code structure information and leverage them
to understand the code’s character-level string semantics and
flow structures.

• We propose SEAGULL that combines natural language pro-
cessing and flow analysis to more accurately and automati-
cally locate credential leakage in the source code.

• We apply SEAGULL to real-world projects and found that
credentials are incorrectly used in many projects. Although

some developers were aware of the credential leakage issues
and fixed them, the fixes were incorrect.

• We have open sourced SEAGULL at https://github.com/
BlackJocker1995/Seagull.

II. PROBLEM AND SOLUTION

A. Credential Leakage

Listing 1 displays an open-source project on GitHub with
124 stars, that leaks an authentication token. Specifically, in
Line 10, this code stores the secret (credential) in plaintext. It
is leveraged for authorization (line 42), posing a security risk
as it exposes the source credential within the source code.
This indicates that the credential has been used or distributed
by at least 124 developers, which increases the likelihood of
its exposure to a wider audience.

Listing 1 Example with credential leakage
8 // client id/secret
9 public static final String CLIENT_ID =

"5b074*****c16627***4";↪→

10 public static final String CLIENT_SECRET =
"a2c*******cd861c****c5c86e5****baf4c96a5";↪→

...

40 CreateAuthorization createAuthorization = new
CreateAuthorization();↪→

41 createAuthorization.client_id = CLIENT_ID;
42 createAuthorization.client_secret = CLIENT_SECRET;
43 accountService.createAuthorization(createAuthorization)

In addition, some developers include credentials directly in
the source code for code testing convenience. For instance,
in many programs that utilize older versions of the jhipster
framework 1, there is a test file (i.e., TokenProviderTest.java)
that stores credentials in hard-coded plaintext. While this
implementation is helpful for initial testing and is not strictly
a leak (test credential), as the program matures or becomes
open-source, such an implementation may inadvertently en-
courage other developers to apply similar credentials, leading
to a “real leak”. Although newer versions of jhipster have
eliminated this file, other programs that rely on older versions
remain vulnerable to this issue.

The proper way to use credentials is to avoid plaintext. We
consider the example of using a password for authentication;
some development kits (e.g., Android and WPF) apply pass-
word interfaces such as passwordView, and JPasswordField),
which store the user input into a dynamic variable. Hardware-
based methods [21], [22] consider storing the password in a
hardware device (e.g., TPM and SGX) to prevent leakage.
Another type of commonly used credential is tokens, namely,
sequences of pseudo-random strings generated dynamically to
verify data integrity and confidentiality [23], [24], [25]. These
credentials should be stored in a file with the appropriate
access rights.

B. Weaknesses of Existing Approaches

Although researchers have proposed many approaches for
exploring leaked credentials, the following drawbacks are
manifested:

1jhipster framework: https://github.com/jhipster
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Weakness I: Converting source code into a textual rep-
resentation. Many credential analysis approaches [12], [16],
[18] consider source code textual pieces and pinpoint creden-
tials using natural language processing. Although credentials
are textual strings, it is inaccurate to convert all source code
into a textual representation when assessing the security of
credentials because the syntax and semantics of the source
code are lost. Without understanding the details of credential
implementations and credential handling processes (e.g., how
a credential is stored as a variable of a specific type, and how
it is used as a parameter of sensitive APIs), it is challenging to
locate credentials accurately and determine whether a creden-
tial is used correctly. For example, a 16-byte string consisting
of characters such as digits, letters, and symbols can be used
either as a secret key or a public identifier.

Weakness II: Detecting credentials with language-
dependent heuristics. Traditional approaches [13], [15] rely
on prebuilt rules or patterns of leakage activities to detect cre-
dential leakages. Although pattern-based identification works
well for specific credentials, such as security tokens, it does
not suit a broader range of credentials. A methodology aiming
to achieve accurate detection requires domain knowledge of
the code (the used programming languages, credential-related
APIs, etc.), often involving great manual effort. Moreover, the
formats of credentials might not be similar across different
projects. In these cases, heuristic-based approaches [26], [19],
[27] will suffer from either many false-positive or many false-
negative results.

Another issue is that increasingly many projects leverage
more than one programming language. Considering the An-
droid app ecosystem as an example, many Android apps are
developed using both Java and C languages, and credentials
are often shared between the Java and C modules [17]. In these
cases, heuristic rules can only be applied to a specific object
written in a single programming language [28], [29], but fail
to find all credentials and detect all their leakages.

Weakness III: Simply applying machine learning to literal
constants. To address open-source projects with millions of
lines of code and diverss coding styles, recent approaches [30],
[31] utilize machine learning (ML) to “recognize” credentials.
Such approaches are promising, but their accuracy is still low
compared to the accuracy of methods using fine-grained pro-
gram analysis techniques. The shortcoming of most existing
ML-assisted approaches is that they use context-independent
classifications of literal constants. The classification model
does not consider the code context where a literal constant
is used. As a result, such approaches only achieve relatively
coarse-grained identification.

C. Solutions

We combine semantic understanding with static code analy-
sis to address the drawbacks of the existing credential analysis
approaches. Specifically, our approach transforms the source
code into a programming language-independent form. It then
applies dual-model ML-enhanced, context-aware classification
to detect credential leakages.

• Instead of directly searching for credentials in source code
text, we leverage code querying techniques to find creden-
tials. In this way, we handle source code in a unified way
and fully use the intrinsic information of the code.

• Instead of only manually collating data to identify creden-
tials, we use a semiautomated approach with Generative
Adversarial Networks (GAN) to create many supplementary
credential datasets in different forms and train a credential
classification model with not only manually labeled datasets
but also the generated datasets.

• Instead of merely using one ML model for string/symbol
classification in source code, we train two models against
literal constants and the code structure (i.e., code graph).
The insight here is that a single-string classification model
cannot achieve sufficiently accurate credential identification.
We need to check the related codes of the literal constants
to improve the identification accuracy. Therefore, in our ap-
proach, the source code is transformed into a flow context,
a form containing the code of a credential and the data and
control flows that are directly/indirectly dependent on it.
We further develop a model for determining whether a flow
context could trigger insecure credential usage. Credential
leakage is confirmed with high confidence if both classifiers
label the credential.

III. SEAGULL DESIGN

To assess the usage of credentials in software, we design and
implement SEAGULL, which consists of three components (see
Figure 1): Code Description Retrieval - it creates a codebase
description composed of all variables, data, and control flows;
Credential Candidate Selection - it explores the constants that
might be credentialed with a character-level analysis. Flow
Context Classifier - it explores insecure, sensitive activities for
credentials and determines whether any credential is involved
in a remote connection, authentication, and encryption.

Specifically, SEAGULL first assesses all source code for
each project. Through code scanning, SEAGULL creates a
codebase description, which contains the declared variables,
the correlated data, and the control flows of the code ( 1 2 ).
Then it extracts all literal constants assigned to variables or
used as function input arguments. Taking each literal constant
as input, a credential classifier labels each constant that might
be a credential as credential candidate ( 3 to 6 ). Given each
credential candidate, SEAGULL tracks the data and control
flows that are directly/indirectly dependent on the candidate
( 7 to 9 ). Finally, relying on a flow context classifier,
SEAGULL detects flows that involve sensitive activities and
labels such flows as leakage ( 10 11 ).

A. Code Description Retrieval

To detect potential credential leakages in code, SEAGULL
examines the code to pinpoint all the declared variables to
which strings are assigned and string arguments in the function
call. Based on these labeled strings, SEAGULL then tracks
the execution flows that are directly/indirectly dependent on
them. Specifically, SEAGULL initially establishes a codebase
description recording the above information (i.e., constant
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Fig. 1: Architecture of SEAGULL.

string value, variable, and flow) by applying CodeQL [32], an
open-source semantic code analysis engine. CodeQL can con-
vert code into a database-like form, capturing comprehensive
information such as variables and call flow within the code.
This transformed representation contains nearly all the relevant
details necessary for analysis. In SEAGULL, we leverage rich
information (database) to formulate various analysis policies
designed explicitly for cross-language recognition of variables,
strings, and flow.

In this paper, our primary focus is on analyzing code
written in the most commonly used programming languages:
C, C++, Java, C#, Python, and JavaScript. These languages
are prevalent in open-source projects. Table I provides an
overview of the environmental requirements for CodeQL to
analyze code in these programming languages. Nevertheless,
it is worth noting that SEAGULL can also be readily applied
to projects written in other programming languages 2.

TABLE I: Environment requirement for different language.

Language Requirement

Compiled
C/C++ gcc/g++ or Make or CMake

Java Maven or Gradle
C# .Net Core

Interpreted Python Python Runtime
Javascript Javascript Runtime

1) Strings and Variables: Due to the variation across pro-
gramming languages, we employ distinct schemes in SEAG-
ULL to capture strings and variables.

Compiled languages (i.e., C, Java, and C#). They require
static variable types to be declared in the source code, and
SEAGULL identifies the variables’ initialized statements and
function call statements. Then, it selects the variables and
function arguments of type char* or String.

2Supported languages and frameworks: https://codeql.github.com/docs/
codeql-overview/supported-languages-and-frameworks/

Interpreted languages (i.e., Python and JavaScript). They
are dynamically typed; SEAGULL determines the variable
types by searching for the assignment statements and function
arguments. Given an assignment expression, SEAGULL regards
a value as a literal constant if listed in quotes or double
quotes. The assigned variable on the left is labeled a string.
A variable will be labeled a string if assigned by a string
variable. Similarly, SEAGULL examines function invocation to
determine whether any value in quotes is utilized as an input
argument. If so, it identifies the position of the argument and
locates the function declaration to obtain the corresponding
variable.

2) Code Flow: Based on the string variable, SEAGULL
obtains data and control flows directly/indirectly dependent
on these variables via CodeQL. Specifically, we set the string
variable as the source and other functions, variables, and
arguments as the sinks. CodeQL infers the execution path
from the source to each sink within the same file. All the
information, i.e., string variables, the corresponding data,
and flow dependencies, is collected to establish a Codebase
Description.

B. Credential Candidate Selection

Since an open-source project could include many literal
constants, manually filtering out the credentials is time-
consuming. Hence, we build a string checker, Credential
Classifier, to automatically classify literal constants into two
categories, credential and ordinary.

1) Credential Pattern Analysis: By inspecting the creden-
tial strings, we observe that credentials differ slightly from
ordinary strings in form, semantics, and length. For instance,
credentials usually consist of a mix of alphanumeric and spe-
cial characters, such as !abc123000, a09acf0233558f34; how-
ever, ordinary strings are common sentences or special iden-
tifiers with semantic meanings, e.g., Process is finished!,
SwithOn.

https://codeql.github.com/docs/codeql-overview/supported-languages-and-frameworks/
https://codeql.github.com/docs/codeql-overview/supported-languages-and-frameworks/
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Therefore, SEAGULL builds a credential classifier to study
patterns of credentials. To achieve fine-grained classification,
three groups of training data are taken as input, i.e., password,
token, and ordinary. Specifically, a password is a literal con-
stant consisting of several random characters used by sensitive
functions (e.g., authentication and data encryption/decryption).
A token is a literal constant used as a secret access key for
integrity and confidentiality validation or a hash token for user
authentication. All the other strings belong to the ordinary
group.

2) Classifier Construction: As the character distribution in
credentials differs from the distribution in ordinary strings,
SEAGULL adopts a non-linear learning algorithm to build the
credential classifier. SEAGULL first converts the strings into
feature vectors. Since each string’s characters have no semantic
meaning, SEAGULL uses a character tokenizer for vector
transformation. Specifically, it adopts the N-gram method [33]
to split each string into substrings of a length shorter than N.
For instance, when splitting the string abc with N = 3, the N-
gram result is {a, b, c, ab, bc, abc }. Then, SEAGULL merges
all results into a word list and generates an encoding dictionary
based on the word appearance frequency. By leveraging this
dictionary, SEAGULL converts all strings into vectors and pads
them to length 512 with zeros. Afterward, SEAGULL uses
CNN [34], a string-level Convolution Neural Network model
for extracting local character features and building a credential
classifier. The CNN model consists of an embedding layer,
two convolution layers, two max-pooling layers, a dropout
layer (with a 0.2 dropout rate), and a dense layer with ReLU
activation.

By searching for the string values in the codebase de-
scription, the credential classifier outputs a probability score
for each label (i.e., password, token, and ordinary) to which
the string might correspond. SEAGULL then selects the label
with the highest probability score for the string. All strings
with password and token labels are regarded as credential
candidates for further credential leakage checking.

C. Credential Leakage Detection

Sensitive activities using credentials usually involve similar
function calls; thus, SEAGULL constructs a flow context classi-
fier to study patterns of sensitive activities and further explores
leaked credentials. This paper considers sensitive the most
common activities requiring credentials, i.e., data/connection
encryption, user authentication, and cryptographic algorithm
setup.

1) Flow Pattern Analysis: Starting from a literal constant,
we construct flow contexts by discovering all the data and
control flows directly/indirectly dependent on this constant in
the codebase description. Therefore, following the execution
order, each flow context includes all the traceable information.
The involved variables are saved in the Variable Name format.
Additionally, SEAGULL record the invoked functions based
on the type of function call (i.e., regular and internal). If
the invoked function is regular (i.e., call(args), SEAGULL
records the function name and arguments in the format of
[Function Name, Argument Names]. For an internal function

(e.g., object.call(args)), SEAGULL records the name of
the external object as well, in the format of [Object Name,
Function Name, Argument Names].

To avoid overfitting caused by the imbalanced training
dataset, we apply distribution-aware synthesis [35] based on
the labeled credentials and ordinary flows. The synthesis relies
on the distributional differences between credential flows and
ordinary flows. We leverage a Generative Adversarial Network
(GAN) [36] to augment the set of credential flows. A GAN
consists of two competitive models, i.e., a generator and
a discriminator. The former generates additional credential
flows with similar credential use patterns, whereas the latter
discriminates between real and fake flows. The generator and
discriminator are trained simultaneously in multiple rounds.
Finally, the generator create synthetic credential flows that are
difficult to distinguish from the original flows.

2) Classifier Construction: The system accepts flow con-
texts containing both credentials and ordinary strings as input.
It employs the deep learning algorithm TextCNN [37] to
construct the flow context classifier. We initially convert each
flow context into a feature vector to accomplish this. Since
the variable names and function names commonly include
natural language words and abbreviations, we segment all
the names in the flow contexts (i.e., function, variable, and
argument names) into meaningful words and abbreviations bu
camel-cased and underline splitting. Then, we leverage the
encoding dictionary to transform each flow context into a
vector, which records the appearance frequency of each word
to generate a frequency dictionary. The frequency dictionary is
applied to convert all strings into vectors (padding to 256 with
zero values). Unlike string values, the flow contexts contain
variable names and function names, similar to natural lan-
guage words containing obvious word boundaries. Therefore,
we adopt TextCNN [37], a classification method commonly
used for natural language processing. In particular, we use
GloVe(6B-100) [38] as the embedding layer to reduce the
impact of the data distribution. The model consists of one
GloVe embedding layer, two convolution layers, two max-
pooling layers, a dropout layer (with a 0.2 dropout rate), and
a dense layer with ReLU activation.

3) Leakage Detection: To assess whether a credential is
leaked, SEAGULL first searches for literal constants and es-
tablishes a codebase description for the project. Through the
Credential Classifier, SEAGULL identifies the credential can-
didates labeled credential. It then constructs the flow context
of each credential candidate by tracking and recording the
data and control flows directly/indirectly dependent on the
credential candidate.

SEAGULL transforms each flow context into a feature vector
using the encoding dictionary. The feature vector is then given
as input to the Flow Context Classifier, which labels it either
ordinary or leakage. When a leakage is reported, SEAGULL
then pinpoints the leaked credential in the codebase description
and conducts backward slicing to locate the code snippets
leaking the credential. If a literal constant’s text is classified as
a credential (by Credential Classifier), but it is not involved in
any flow context (i.e., it is not used), SEAGULL will generate
a warning.
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SEAGULL addresses false-positives via two models. The first
is the Credential Classifier, which is used to quickly screen
potential strings, effectively reducing the analysis required by
the second model. The second is the Flow Context Classifier,
which uses a more precise method to analyze the potential
credentials. The combined use of these two models enhances
the time efficiency while at the same time ensuring detection
accuracy.

IV. EVALUATION

We evaluate the performance of SEAGULL by answering the
following research questions (RQs):

• RQ1: Classifier Performance. How well does each clas-
sifier label credentials and the corresponding leakages?

• RQ2: SEAGULL Accuracy. Does the dual-model im-
prove the performance of SEAGULL in detecting cre-
dential leakages, and how well does SEAGULL detect
leakages?

• RQ3: Practical Application. How well does SEAGULL
perform in detecting projects in practice?

A. Experimental Setup

This section describes our experimental environment and
how the experimental data are collected.

1) Experimental Program: We develop a Python-based
SEAGULL demo. All experiments and training procedures are
conducted on a server with the following specifications: an
AMD Ryzen 3970X processor, 64 GB of RAM, an RTX 3090
graphics card, and the Ubuntu 20.04 operating system.

2) Credential Data Collection: To train the classifiers, we
collected data from the following sources. To ensure data
diversity, the duplicated data were removed.
• GitHub. We randomly select 13, 422 open-source projects

published on GitHub, where their analyzed database comes
from LGTM 3. LGTM is an online analysis platform offered
by CodeQL, that houses a collection of CodeQL analysis
databases for various known projects on GitHub. Based
on their database, SEAGULL exported all literal constants
and established corresponding codebase descriptions. The
credential pattern is a meaningless string comprising random
numbers, letters, and symbols. We filtered out string values
violating this pattern and marked them as ordinary, such
as complete sentences, storage paths, description logs, and
binary texts. For reset constants, we find their initial variable
and check whether their variable names contain sensitive
keywords such as password, passwd, pwd, secret, auth,
token, security, seed and key, and further manually labeled
the literal constants password or token. We generally labeled
1, 643 credentials (i.e., 1, 050 passwords and 593 tokens)
and 97, 271 ordinary strings. Notably, we only considered
the unique text here, not its flow.

• RockYou2021 [39]. We included strings summarized in
RockYou, a password leakage compilation of 8.4 billion
unique password strings. By eliminating the non-ASCII

3CodeQL online platform: https://LGTM.com, which was merged into the
GitHub at Nov,2022 https://docs.github.com/code-security

passwords (i.e., non-English strings), we randomly choose
100, 000 strings as password.

• Password and Token Generator. Since some passwords
and tokens might be generated by random number genera-
tors instead of humans, we leveraged a widely used pass-
word manager software, OnePass [40] to generate 100, 000
passwords comprised of 6-20 digits, letters, or symbols and
200, 000 security tokens by following the token formats of
the mainstream internet service providers (e.g., Google [25]
and AWS [24]).
3) Credential Flow Collection: For literal constants marked

as credentials, we checked the flow contexts to explore whether
any sensitive activities (i.e., TLS/SSL connection, authentica-
tion, and cryptography) are launched. If a function achieves
a sensitive activity, we label the flow context a credential
flow. Otherwise, it is labeled an ordinary flow. Flow contexts
extracted from ordinary strings are treated as ordinary flow.

B. RQ1: Classifier Performance.

As SEAGULL relies on the performance of the credential and
flow context classifiers, we evaluate each classifier separately.
To assess the performance of each classifier, we calculated
precision, recall, and F1-score as the evaluation metrics.

Credential Classifier. In total, the test experiment includes
201, 050 passwords, 200, 593 security tokens, and 97, 271 or-
dinary strings, of which 10% (i.e., 20, 102 passwords, 20, 060
security tokens, and 9, 727 ordinary strings) are used to con-
struct the test dataset. By utilizing the training data, the classi-
fication results for the test dataset are obtained, as presented in
Table II. On average, the credential classifier successfully iden-
tifies 39, 669 out of 40, 162 credentials, achieving a precision
of 95.85%. It identifies 19, 611 passwords and 20, 058 tokens
out of 20, 102 passwords and 20, 060 tokens, respectively. The
average F1-score when identifying passwords, security tokens,
and ordinary strings is 94.16%. It has a high false-positive
rate when detecting ordinary strings because some ordinary
strings follow credential patterns such as ChangeSpeed and
Surprise!. Thus the classifier mislabels them as “password”.
Additionally, passwords provided by RockYou are simple,
affecting precision and recall when distinguishing passwords
from ordinary strings.

TABLE II: Performance of credential classifier.

Password Token Ordinary

Reported 21,205 20,183 8,502
Confirmed 19,611 20,058 8,009

Precision 92.48% 99.38% 94.20%
Recall 97.56% 99.99% 82.33%

F1-Score 94.95% 99.68% 87.87%

Flow Context Classifier. Similarly, given the labeled flow
contexts (i.e., 2, 793 credential flows and 97, 271 ordinary
flows), we iteratively utilized 90% of them to train the flow
context classifier and the remaining 10% to test performance.
Besides, we assessed the diversity improvements contributed
by GAN. Hence, we executed GAN to generate 10, 000

https://LGTM.com
https://docs.github.com/code-security
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credential flows and then ran the classifier on the dataset with-
/without the generated credential flows, respectively. Figure 2
shows a two-dimensional representation of the flow context
distribution, where the blue dots represent ordinary flows,
the orange dots represent authentic credential flows, and the
green dots represent the GAN-generated credential flows. The
green dots are distributed similarly to the orange dots; the
GAN-generated credential flows are similar to the authentic
credential flows.

Ordinary Flow
Credential Flow
GAN-generated Credential Flow

Fig. 2: Flow context distribution in a two-dimensional space.

Table III shows the results of the flow context classifier
with/without using GAN. When using the additional generated
credential flow contexts, SEAGULL successfully identifies 264
credential leakages out of 265, achieving an F1-score of
94.29%. However, SEAGULL misses 12 credential leakages
when not using the generated data. The results show that
the GAN-generated dataset increases the programming logic
diversity and effectively improves the detection performance
of the flow context classifier.

TABLE III: Performance of the flow context classifier with
and without GAN.

Credential Context Ordinary Context

W W/O W W/O

Reported 295 281 9,697 9,711
Confirmed 264 253 9,696 9,699

Precision 99.99% 99.98% 89.49% 90.04%
Recall 99.68% 99.71% 99.62% 95.47%

F1-Score 94.29% 92.67% 99.84% 99.79%

W means model trained with GAN. W/O means
model trained without GAN.

Answer to RQ1: Two classifiers are well-trained to explore
credentials and credential leakages, ensuring a general ap-
plication scope of SEAGULL.

C. RQ2: SEAGULL Accuracy

After assessing the performance of each classifier, we evalu-
ate SEAGULL from three aspects: 1) the necessity of the dual-
model; 2) comparison with state-of-the-art works; 3) diversity
of programming languages.

For the detection assessment, a sample of 300 real-world
GitHub projects was randomly collected from LGTM, along

with their corresponding databases. Figure 3 shows their
GitHub star distribution. Approximately 52.35% of the projects
have fewer than ten stars, 12.42% have 11-50 stars, 6.38%
have 50-100 stars, 19.13% have 101-1000 stars, and 9.73%
have over 1,000 stars. Then, SEAGULL applied the database
to create a codebase description. Based on a codebase de-
scription analysis, 20,801 literal constants were identified.
Subsequently, following the variable rules, 748 literal con-
stants contain keywords password, passwd, pwd, secret, auth,
token, security, seed and key and were marked as potential
credentials. By manually checking the usage of these potential
credentials, we finally confirmed 219 credential leakages,
consisting of 169 password leakages and 50 security token
leakages in 80 projects. Note that a project might use the
same credentials to conduct different sensitive activities. For
example, a credential might be used for authentication and
encryption.

0-10 Star

52.35%

11-50 Star

12.42%

51-100 Star

6.38%

101-1000 Star

19.13%
>1000 Star

9.73%

Fig. 3: Distribution of stars for the projects.

1) Necessity of the dual-model: To assess the necessity
of the dual-model approach, we conducted an experiment
in which we executed only one model at a time (either
the credential or the flow context classifier) to evaluate the
detection accuracy. Any literal constant reported as a credential
is labeled credential leakage in the credential classifier-only
scheme. Without applying the filtration of the credential clas-
sifier, the flow context classifier-only scheme identifies literal
constants and constructs flow contexts to make judgments.
Table IV reports the experimental results obtained using only
one classifier.

TABLE IV: Detection results of the dual-model.

Credential Classifier Flow Context Classifier

Reported 319 241
Correct 201 192

Precision 63.01% 79.67%
Recall 91.78% 87.67%

F1-Score 74.72% 83.48%

Credential Classifier. When only analyzing literal constants
without considering the usage of those constants, 319 creden-
tial leakages were reported, of which 201 are actual leakages,
achieving a precision of 63.01%. We manually inspected the
results and found that some ordinary strings are short and
only include single words (e.g., HalfSpeed, and Dodge!). Thus,
the credential classifier regarded these constants as credentials.
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Furthermore, the credential classifier also missed 18 credential
leakages. Some of them utilizes non-standard forms of tokens,
such as &ˆgHUIBHFJNFgdfgdJHGFHJ&ˆ% with symbol characters;
others use longer private keys (e.g., RSA with length 2048),
that are beyond the size of our dataset.
Flow Context Classifier. When relying only on the flow
context analysis for exploitation, 241 leakages were reported,
achieving an F1-score of 83.48%. Compared with the cre-
dential classifier, the flow context classifier is more accurate
in detecting credential leakages with fewer false-positives.
However, it is challenging to correctly identify sensitive ac-
tivities that use credentials because the flow of using the
credentials could be very different. Consequently, the flow
context classifier might neglect vulnerable flows if the sensitive
activities are not precisely defined.

In conclusion, none of the classifiers can balance the false-
positives and the false-negatives; thus, the dual-model can
eliminate the limitations of each classifier and achieve a better
detection result (shown in Sec. IV-C2).

2) Comparison with State-of-the-Art Works: To evaluate
the detection effectiveness of SEAGULL, we compared it with
three state-of-the-art detection tools, PassFinder [18],
Detect-Secrets [19], and Gitleaks [41]. Specifically,
PassFinder applies a simple deep learning approach to
recognize credential strings and identify credential leakages
using natural language processing to check the statements
surrounding the credentials. Detect-Secrets and Gitleaks
detect credential leakages via regex-based approaches. Such
approaches rely on heuristic rules driving the search for a
wide range of secrets in code.

TABLE V: Detection results of SEAGULL, PassFinder,
Detect-Secrets and Gitleaks.

SEAGULL PassFinder Detect GitleaksSecrets

Reported 188 369 950 467
Correct 179 156 68 31

Precision 95.21% 42.28% 6.95% 6.64%
Recall 81.74% 71.23% 30.14% 13.72%

F1-Score 87.96% 53.06% 11.29% 8.95%

The comparison results are listed in Table V. In total, SEAG-
ULL, PassFinder, Detect-Secrets, and Gitleaks successfully
detected 179, 156, 66, and 31 credential leakages, respectively.
The results demonstrate that SEAGULL is more effective than
PassFinder, Detect-Secrets, and Gitleaks, achieving an F1-
score of 87.96%. Generally, the regex-based approaches (i.e.,
Detect-Secretes and Gitleak) performed the worst. Although
they reported many leakages (i.e., 950 and 467 reported leak-
ages, respectively), most of these reports are false-positives.
In detail, Gitleaks cannot distinguish password usage effec-
tively. Among the 31 credential leakages that are correctly
reported by Gitleaks, only 2 password leakages are reported.
Detect-Secrets successfully identified 52 password leakages
and 14 security token leakages.

We manually inspected the cases that were reported incor-
rectly and found that Detect-Secrets and Gitleak: 1) mistakenly
labeled the strings (e.g., UUID and regular expression for

TABLE VI: F1-Score comparison between the credential clas-
sifiers of SEAGULL and PassFinder.

Password Token Ordinary

SEAGULL 94.95% 99.68% 87.87%
PassFinder 93.37% 99.50% 84.12%

testing) in the annotations and comments as credentials and
further regarded these credentials as leakages; 2) identified the
credentials declared in the dead code, that is, no sensitive func-
tions use the declared credentials. Both tools detect credential
leakage without considering the semantics of the source code,
which triggers false-positives by reporting unused credentials,
tokens in comments, format log strings, and hash strings.

PassFinder (a deep learning approach), which performs bet-
ter by achieving a higher precision of 53.06%, misses 63 cre-
dential leakages, causing many false-negatives. An additional
analysis was performed exclusively between our credential
classifier and PassFinder’s. We utilized the identical training
and test dataset as SEAGULL, as described in Sec. IV-C1,
and evaluated their respective performances. Table VI presents
the F1-Scores for different classes. Our classifier demonstrates
superior performance under the same testing conditions. The
distinctive characteristic of credentials is their composition of
letter-number combinations (e.g., abc123), setting them apart
from regular words. As a result, correlations exist not only
within these character (a, b, ..., 3) but also between combina-
tions (abc and 123). Consequently, the additional processing
of N-gram takes into consideration these correlations between
combinations as well. The more critical difference is that
the two have different ways of extracting context. PassFinder
relies on analyzing the code block invoked six lines before and
after the statement where the credential is operated. However,
in real projects, the declaration and use of credentials are not
always close, as demonstrated in Listing 1 (Line 10 and Line
43). The issue with PassFinder is that its extracted context
does not effectively describe the relationship between a string
and its usage when it is far from the declaration. Instead,
SEAGULL gives more attention to the flow context, which is
more reasonable and accurate. Compared to the code block,
the flow context enables the description of credential usage
scenarios across functions and user-defined functions (e.g.,
encryption and authentication). In addition, the performance
of SEAGULL depends on the suitability of the training dataset.
Hence, some customized credential formats and names cannot
be distinguished because our dataset does not include the cor-
responding naming pattern or credential formats. For example,
we found an authentication named userDump, whose natural
semantics are treated as irrelevant to sensitive activities.

3) Language Diversity: As SEAGULL analyzes projects
written in multiple languages, we specifically analyzed
whether SEAGULL could exploit each type of programming
language effectively. Furthermore, we compared SEAGULL
with a language-dependent tool, CodeQL-Hard-coded, which
is an official script provided by CodeQL for identifying
credentials in Java.

Table VII lists the credential leakages written in different
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programming languages. On average, SEAGULL achieved a
recall higher than 80% for most programming languages,
especially Python projects, with the highest recall of 91.67%.
As SEAGULL reported more false-positives when analyzing
projects written in C#, we manually analyzed these projects.
Consequently, we found that 1) some tokens are defined
in customized formats, which cannot be recognized via the
standard forms provided in the training dataset; 2) some
customized cryptographic functions have complicated names
(e.g., WXBizMsgCpt), which cannot be detected by SEAGULL,
even though the utilized credential is identified. Nonetheless,
the above issues are not specific to C#, which demonstrates
that SEAGULL supports cross-language analysis as long as the
credential formats and function naming principles follow the
general standards.

Additionally, we ran the language-dependent tool
CodeQL-Hard-coded to explore credentials in Java projects
and compared its detection results with the results of Java
projects reported by SEAGULL (shown in Table VIII).
The results show that SEAGULL achieves a high precision
and recall of 93.70% and 80.40%, respectively. However,
CodeQL-Hard-Coded only achieves a precision of 0.59%.
These results indicate that SEAGULL achieves high accuracy
for cross-language analyses and when analyzing code written
in a single programming language.

TABLE VII: Detection accuracy of SEAGULL for different
languages.

Java C# Python Cpp JS

Total Leakage 148 26 24 11 10
Detected 119 20 22 10 8
Recall 80.4% 76.9% 91.6% 90.9% 80.0%

TABLE VIII: Detection results of SEAGULL and CodeQL for
the Java language.

SEAGULL in Java CodeQL-Hard-coded

Reported 127 16,546
Correct 119 97

Precision 93.70% 0.59%
Recall 80.40% 55.75%

Answer to RQ2: SEAGULL is highly effective in detecting
credential leakages across different programming languages.
Through the credential classifier, SEAGULL avoids many
non-relevant explorations, which addresses the path explo-
sion issue. Besides, the flow context classifier ensures that
SEAGULL is suitable for various programming styles of
different developers.

D. RQ3: Practical Application

To verify whether SEAGULL can be applied to various
open-source projects, we randomly downloaded 377 open-
source projects including 101 C/C++, 76 C#, 26 Java, 86
JavaScript, and 88 Python projects, and applied SEAGULL to

detect credential leakages. SEAGULL considered the last ten
commits for each project for analysis, taking approximately
20-70 seconds to establish codebase descriptions locally for
each project. They contain 2,706 literal constants, and detailed
information, including text, file path, and project information,
are listed on the website4. If a literal constant appears in
the same path across multiple commit versions, its records
will be merged into the latest commit. In total, SEAGULL
reported 22 credential leakages. After analyzing these cre-
dentials manually, we confirmed that 19 out of 22 (86%)
credentials are leaked by 19 projects, including 2 projects with
C/C++, 4 with C#, 10 with Java, 1 with JavaScript and 2 with
Python. Table IX reports credential leakage examples from
the selected real-world projects. Although two leakages are
located in the historical versions of the projects, leaving the
credentials without any extra protection still rendered them
vulnerable because humans tend to reuse easy-to-remember
passwords; thus, developers could reuse the same credentials
as input for sensitive activities.

Interestingly, we observed password leakage in one of
the historical versions of ua***gv, which is a configura-
tion leakage detection project (Listing 2). The password
EGHUP**ZHLNLS and email sender m133***30@163.com and
receiver han78***98@ilve.com are declared as a string lit-
eral in the source code (Lines 9-11). The password is used to
log into the sender’s email (Line 19) and send messages to the
receiver (line 20). The context of EGHUP*****ZHLNL, which
includes [password, smtp, login, sender], is deemed
by SEAGULL to be an instance of credential leakage. The
leakage is present in a historical version and then fixed in the
current version by removing the email addresses of the sender
and receiver (patch #54ed**a). Unfortunately, such a patch
is insufficient to address the leakage because attackers can
easily launch a man-in-the-middle attack to obtain the sender’s
email. Similarly, jum**llan/andr*****-api removes the entire file
Config.java in #4cdb**8, but the leaked token is still present
in Git commits, which also represents a vulnerability attackers
can exploit to launch a man-in-the-middle attack.

Listing 2 Historical credential leakage in an open-source
project.
9 - sender = "m133***30@163.com"

+ sender = ""

10 - recver = "han78***98@ilve.com"

+ recver = ""

11 password = "EGHUP*****ZHLNLS"
12 message = MIMEText(content, "plain", "utf-8")

...

18 smtp = smtplib.SMTP_SSL("smtp.163.com", 994)
19 smtp.login(sender, password)
20 smtp.sendmail(sender, [recver], message.as_string())

Answer to RQ3: SEAGULL successfully analyzes various
language projects to detect credential leakage in both current
and historical versions.

4https://github.com/BlackJocker1995/Seagull/blob/master/real_test/real_
project.csv

https://github.com/BlackJocker1995/Seagull/blob/master/real_test/real_project.csv
https://github.com/BlackJocker1995/Seagull/blob/master/real_test/real_project.csv
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TABLE IX: Credential leakages in selected real-world projects.

Project Language Location GitHub Star

4***0n/r***e Java src/main/java/com/rarchives/*****/ripper/rippers/TumblrRipper.java 903
jum**llan/andr*****-api (#4cdb**8) Java app/src/main/java/com/androidstudy/mpesa/Config.java 135

chri***an1741/Twit*****Analysis Python src/StreamingTwitter.py 18
Blac****5/ua***gv (#54ed**a) Python Cptool/mailtool.py 12

nm***-repo/nm*****uncer C# client/csharp/SampleBouncerApiClient/BouncerClient.cs 1

The names of the projects are partially anonymized.

E. Usage of Credentials

By analyzing the collected credential flows, we studied
the general application scenarios of credentials to understand
what sensitive activities can be affected. Specifically, we
summarized the frequency of words appearing in credential
flows. Figure 4 shows the top 20 words that appear frequently.
Meaningful words (e.g., authorization service, assert, sql)
indicating remote services and data management are included.

0 10000 20000 30000 40000 50000

authorisation
string

get
id
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map

name
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to

key
result
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user

Fig. 4: Top-20 words distribution in context flow of credential.

By analyzing the vulnerable code, we saw that the cre-
dential leakages even affect the authentication services of
mainstream platforms such as Amazon, Tumblr, and GitHub.
For instance, r**me (Lstlisting 3), an album ripper plugin
for quickly downloading all images in online albums with
over 900 stars on GitHub, initializes a default literal constant
API key DEFAULT_API_KEY in Line 37. The flow context
containing [TUMBLR_AUTH_CONFIG_KEYAUTH_CONFIG_KEY,
Utils, getConfigString], is deemed as an instance of
credential leakage. Through static code analysis, we found
that the API key is a default API key for communicating with
tumber.com (Line 40). Therefore, the default API key will
always be utilized to configure the remote connection with
tumblr. As a functional plugin, other developers might invoke
this vulnerable plugin as an external package to build their
projects, which might widely spread the vulnerability. Such a
vulnerable yet widely used plugin is a notable example of a
lack of security in software supply chains.

We also identified a misapplied credential used for ac-
cess control. BullN*****ugin (Listing 4), an official Plugin of
BullNexRP, embeds a literal string password as R4D****mbg
in the source code. Using that username and password, an
attacker can access the database at the remote server of
jdbc:mysql and carry out malicious activities (i.e., steal-
ing/deleting data). The flow context containing [passwd,
getConnection, url, user]; is deemed an instance of
credential leakage.

Listing 3 Tumblr authentication with credential leakage
22 private static final String DOMAIN = "tumblr.com",
23 HOST = "tumblr";

...

37 private static final String DEFAULT_API_KEY =
"JFNLu3Cb****RdUvZib****pSEVYYt****6o8Y****ZIoKyuN";↪→

38

39 private static final String API_KEY;
40 API_KEY = Utils.getConfigString(TUMBLR_AUTH_CONFIG_KEY,

DEFAULT_API_KEY);↪→
...

83 checkURL += "/info?api_key=" + API_KEY;
84 JSONObject json = Http.url(checkURL).getJSON();

Listing 4 Remote access control with credential leakage
19 static String url = "jdbc:mysql:/xxxxxx.com:3306/xxxxx";
20 static String user = "dnlc****ZQ";
21 static String passwd = "R4D****mbg";

...

28 Connection conn = getConnection(url, user, passwd);

V. RELATED WORK

This section discusses related work on vulnerability detec-
tion and sensitive information leakage in source code.

A. Automated Vulnerability Detection

Traditional vulnerability detection methods, such as [42],
[43], [44], [45], rely on rule-based analyses but often suffer
from high false-positives rates. More recent approaches [28],
[46], [47], [48], [49], [29] rely on deep learning methods
to reduce false-positives. Russell et al. [28] implemented an
automated vulnerability detection tool for source code using
deep machine learning. Their approach is based on a custom
C++ lexer for capturing the content meaning of critical tokens
and on a token vocabulary dictionary, which transforms all
software repositories into standardized vectors. Then, the tool
combines a convolution model with a random forest classifier
to detect leakages. A similar approach was subsequently
proposed by Li et al. [46]. They proposed a framework that
transforms the sample source code into a minimal intermediate
representation obtained by code-dependent analysis and code
slicing. The framework uses three concatenated convolutional
neural networks to extract high-level features from represen-
tations. Then, a classifier is trained to detect vulnerability
features.

The Funded tool by Wang et al. [47] is based on a
novel graph-based learning method for capturing program
dependencies, thereby leveraging recent advances in neural
graph networks (CNNs). Wang et al. created a dataset from
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the wealth of historical information available from open-
source projects; they manually marked vulnerable source code
snippets in historically committed patches. Based on this
dataset, they trained a deep learning model to detect vulnerable
code snippets. Alon et al. [49] proposed a general path-based
representation method that takes ASTs of code snippets as
input ,applies a deep neural network model to detect code
semantics and, based on these semantics, catch vulnerable
code snippets. The NLP-EYE tool by Wang et al. [29] is a
source code-based security analysis system. It leverages natu-
ral language processing (NLP) to detect memory corruptions
in source code. Our work differs from those approaches in
that we focus on detecting credential leakages, whereas those
focus on other vulnerabilities, such as memorable ones.

There are also approaches [50], [51], [52], [53] that use
code similarity to detect vulnerabilities. For example, the tool
called Vulpecker, developed by Li et al. [52], automatically
detects vulnerabilities in source code. It does this by using
characterization patch features and a code-similarity algorithm.
Rather than source code, the VulHunter tool by Guo et al. [53]
uses the intermediate representation output bytecode as input
to a neural networks. VulHunter uses a bidirectional LSTM
to build a neural network to analyze the similarity of two
input bytecodes. It determines whether a code is vulnerable by
calculating the similarity between the target program and a set
of vulnerability templates. These methods are not applicable
to the problem of credential leakage detection because of the
enormous diversity of credentials in source code.

B. Sensitive Information Leakage

As developers may inadvertently leave sensitive information
in public source code, previous works have begun to focus
on this issue and propose solutions. The differences between
them are shown in Table X. PassFinder by Feng et al. [18]
identifies potential password leakage using neural networks.
PassFinder relies on a password dataset manually constructed
by analyzing 64, 050 GitHub projects. PassFinder then takes
the password dataset and relevant code contexts as input
to train password and context models, respectively. The
models are utilized to identify password leakages. Although
PassFinder detects password leakage from GitHub projects
effectively, substantial manual efforts are needed to check
and label variable values. Labyrinth by Pistoia et al. [54]
is a privacy enforcement system for the mobile environment.
The main idea is to introduce a man-in-the-middle proxy to
capture all the data exchanged with servers. Via a value-
similarity analysis, it detects whether sensitive data (such as
passwords) are leaked. JTaint by Xie et al. [55] is a dynamic
taint analysis system. It uses JalangiEX to discover potential
privacy leaks in Chrome extensions by monitoring the process
taint propagation, where excessive permissions and operation
behaviors from extensions pose privacy leakage risks. Peng et
al. [56] built a crawler for retrieving phishing kits and measure
credential sharing in phishing sites. The crawler creates fake
credentials and monitors the network traffic to explore where
sensitive information is leaked. A significant drawback of
the tools by Peng et al. and Xie et al. is that these tools

require configuring the runtime environment and are only for
specific languages. In contrast, our method can execute cross-
language analyses without using the runtime environment.
Meli et al. [12] built a tool for exploring secret leakages
of private critical files. The device uses regular expressions
to scan the candidate text. It leverages an entropy filter to
evaluate the text information entropy, a word filter to check
the keywords, and a pattern filter to check the secret format.
The tool then determines whether the candidate text has a
secret leakage. As in the case of static analysis, such a regular
expression-based approach results in a high false-positive rate.

VI. CONCLUSIONS

Security credential leakage makes user accounts and sen-
sitive data vulnerable. In this paper, we propose SEAGULL,
a tool that combines static analysis and deep learning for
carrying out large-scale leakage searches for credential leak-
ages in open-source projects. SEAGULL leverages CodeQL
to generate a static description for project source code that
includes variable properties and data and control flows. Based
on these descriptions, SEAGULL trains and uses a credential
and flow context classifier to accurately detect security cre-
dential leakages in code written in different languages. The
experimental evaluation results show that SEAGULL achieves
high precision. The results also show that compared with three
state-of-the-art tools, SEAGULL is more accurate in credential
detection, especially with respect to the false-positive rate.
This result is important because low false-positive rates are
critical to reducing the amount of manual analysis required to
verify whether leakages are present in the code.
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