
VRFMS: Verifiable Ranked Fuzzy Multi-Keyword
Search Over Encrypted Data

Xinghua Li ,Member, IEEE, Qiuyun Tong , Jinwei Zhao , Yinbin Miao , Siqi Ma, Jian Weng ,

Jianfeng Ma ,Member, IEEE, and Kim-Kwang Raymond Choo , Senior Member, IEEE

Abstract—Searchable encryption(SE) allows users to efficiently retrieve data over encrypted cloud data, butmost existing SE schemes

only support exact keyword search, resulting in false results due tominor typos or format inconsistencies of queried keywords. The fuzzy

keyword search can avoid this limitation, but still incurs low search accuracy and efficiency. Besides,most of fuzzy keyword search schemes

do not consider malicious cloud serverswhichmay execute a fraction of search operations or forge some results due to various interest

incentives such as saving computation or storage resources. To solve these problems, we propose an efficient andVerifiableRanked Fuzzy

Multi-keyword Search scheme, called VRFMS. VRFMSuses locality-sensitive hashing and bloom filter to implement fuzzy keyword search,

and employs TermFrequency-Inverse Document Frequency(TF-IDF) to sort the relevant results. Aiming to further improve the search

accuracy, we design an improved bi-gram keyword transformationmethod. Furthermore, the homomorphicMAC technique and a random

challenge technique are utilized to verify the correctness and completeness of returned results, respectively. Formal security analysis and

empirical experiments demonstrate that VRFMS is secure and efficient in practical applications, respectively.

Index Terms—Searchable encryption, ranked fuzzy multi-keyword search, locality-sensitive hashing, verifiability, homomorphic MAC

Ç

1 INTRODUCTION

MORE and more users outsource their local data to the
clouds to enjoy the convenience and flexibility of cloud

computing. However, it inevitably leads to security and pri-
vacy concerns as the clouds and users are not in the same
trusted domain. The most effective way of solving this

problem is to encrypt the data before uploading them to the
cloud, but makes the retrieval over encrypted data a chal-
lenging task. The SE technique [1] which allows users to
search encrypted files of interest has gained increasing atten-
tion from both academic and industrial fields. Various
SE schemes have been proposed based on different
demands and preconditions [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], but these schemes only support
exact keyword search rather than fuzzy keyword search.
Thus, the fuzzy keyword search dealing with typos or
approximate queries has been extensively studied [14],
[15], [16], [17], [18], [19].

Existing fuzzy keyword search schemes aremainlydivided
into two architectures: 1) using edit distance; 2) using locality-
sensitive hashing (LSH) and bloom filter (BF). For the former,
a set of fuzzy keywords that are similar to original keywords
are constructed by using wildcard and edit distance.
However, the edit distance-based architecture has many
disadvantages, such as non-supporting ranked multi-
keyword search and low search efficiency. When users
make search queries, it is unrealistic to return all cipher-
texts meeting the demands. For the latter, users generate
the bloom filter for each file via LSH. The bloom filters
are encrypted as the indexes and then outsourced to the
cloud server. This architecture outperforms the first one
as it can support fuzzy multi-keyword search efficiently,
but its search accuracy is at most 87%. In addition,
these schemes only use the term frequency to sort the
returned results. Therefore, it is very necessary to pro-
vide a ranked fuzzy keyword search scheme with high
accuracy.

Besides, most SE schemes [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [14], [15], [16], [17], [18], [19] assume that cloud
servers are honest-but-curious, which is not always true in

� Xinghua Li is with the State Key Laboratory of Integrated Service Networks,
School of Cyber Engineering, Xidian University, Xi’an 710071, China, and
also with Engineering Research Center of Big data Security, Ministry of
Education, Xi’an 710071, China. E-mail: xhli1@mail.xidian.edu.cn.

� Qiuyun Tong and Jinwei Zhao are with the State Key Laboratory of Inte-
grated Services Networks, School of Cyber Engineering, Xidian University,
Xi’an 710071, China. E-mail: qytong0820@163.com, jinweizhao@stu.xidian.
edu.cn.

� Yinbin Miao is with the School of Cyber Engineering, Xidian University,
Xi’an 710071, China. E-mail: ybmiao@xidian.edu.cn.

� Siqi Ma is with the School of Information Technology and Electrical Engineer-
ing,University ofQueensland,QLD4072, Australia. E-mail: xdmasiqi@hotmail.
com.

� Jian Weng is with the College of Information Science and Technology, Jinan
University, Guangzhou 510632, China. E-mail: cryptjweng@gmail.com.

� Jianfeng Ma is with the School of Cyber Engineering, Shaanxi Key Labora-
tory of Network and System Security, Xidian University, Xi’an 710071,
China. E-mail: jfma@mail.xidian.edu.cn.

� Kim-Kwang Raymond Choo is with the Department of Information Sys-
tems and Cyber Security, The University of Texas at San Antonio, San
Antonio, TX 78249 USA. E-mail: raymond.choo@fulbrightmail.org.

Manuscript received 29 June 2020; revised 13 Aug. 2021; accepted 30 Dec. 2021.
Date of publication 4 Jan. 2022; date of current version 6 Feb. 2023.
Thisworkwas supported in part by theNationalNatural Science Foundation ofChina
under Grants 62125205, U1708262, U1736203, and 62072361, in part by the Key
Research and Development Program of Shaanxi under Grant 2021ZDLGY05-04, in
part by the Fundamental Research Funds for the Central Universities under Grant
JB211505, and in part by the Guangxi Key Laboratory of Cryptography and Informa-
tion Security under Grant GCIS201917, and the work of Kim-Kwang Raymond
Choowas supported only by the Cloud TechnologyEndowedProfessorship.
(Corresponding author: Yinbin Miao.)
Recommended for acceptance by B. Carminati.
Digital Object Identifier no. 10.1109/TSC.2021.3140092

698 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

https://orcid.org/0000-0002-5583-4155
https://orcid.org/0000-0002-5583-4155
https://orcid.org/0000-0002-5583-4155
https://orcid.org/0000-0002-5583-4155
https://orcid.org/0000-0002-5583-4155
https://orcid.org/0000-0003-4715-5627
https://orcid.org/0000-0003-4715-5627
https://orcid.org/0000-0003-4715-5627
https://orcid.org/0000-0003-4715-5627
https://orcid.org/0000-0003-4715-5627
https://orcid.org/0000-0002-5241-4438
https://orcid.org/0000-0002-5241-4438
https://orcid.org/0000-0002-5241-4438
https://orcid.org/0000-0002-5241-4438
https://orcid.org/0000-0002-5241-4438
https://orcid.org/0000-0001-5437-3572
https://orcid.org/0000-0001-5437-3572
https://orcid.org/0000-0001-5437-3572
https://orcid.org/0000-0001-5437-3572
https://orcid.org/0000-0001-5437-3572
https://orcid.org/0000-0003-4067-8230
https://orcid.org/0000-0003-4067-8230
https://orcid.org/0000-0003-4067-8230
https://orcid.org/0000-0003-4067-8230
https://orcid.org/0000-0003-4067-8230
https://orcid.org/0000-0003-4251-1143
https://orcid.org/0000-0003-4251-1143
https://orcid.org/0000-0003-4251-1143
https://orcid.org/0000-0003-4251-1143
https://orcid.org/0000-0003-4251-1143
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0001-9208-5336
mailto:xhli1@mail.xidian.edu.cn
mailto:qytong0820@163.com
mailto:jinweizhao@stu.xidian.edu.cn
mailto:jinweizhao@stu.xidian.edu.cn
mailto:ybmiao@xidian.edu.cn
mailto:xdmasiqi@hotmail.com
mailto:xdmasiqi@hotmail.com
mailto:cryptjweng@gmail.com
mailto:jfma@mail.xidian.edu.cn
mailto:raymond.choo@fulbrightmail.org

actual scenarios. The malicious cloud servers may execute a
fraction of search operations or forge some results due to
various interest incentives such as saving computation and
storage resources, as many schemes [12], [13], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29] assume. Moreover,
these schemes provide some verification mechanism (e.g.,
Merkle hash tree, RSA accumulator, homomorphic MAC,
auditing technology) to detect the malicious behaviors of
cloud servers. However, most of these schemes just support
correctness verification of search results and do not consider
fuzzy search. Therefore, we need to design a solution that
can both support fuzzy search and verify the correctness1

and completeness2 of the results.
To solve these problems, we propose an efficient and

Verifiable Ranked Fuzzy Multi-keyword Search scheme
VRFMS. We first improve the existing LSH and BF architec-
tures to achieve the high accuracy of fuzzy keyword search.
Subsequently, we introduce the homomorphic MAC and a
random challenge technique to verify the correctness and
completeness of returned results, respectively. Specifically,
the main contributions of this paper are summarized as
follows:

1) Our scheme VRFMS uses LSH and TF-IDF to sup-
port fuzzy multi-keyword search, which enables the
cloud server to return most relevant documents. In
addition, our scheme VRFMS designs an improved
bi-gram keyword transformation method consider-
ing the appearance of the same bi-gram to further
improve the accuracy of fuzzy keyword search. The
highest accuracy can reach 91%.

2) Our scheme VRFMS utilizes Homomorphic MAC
and a random challenge technique to ensure the cor-
rectness and completeness of search results. In com-
parison to previous schemes using Merkle hash tree
or accumulator structure, our scheme VRFMS uses
Homomorphic MAC to ensure the correctness of
similarity computation result apart from the correct-
ness of outsourced indexes and ciphertexts. Besides,
our scheme supports more efficient result verifica-
tion [25].

3) We proved that VRFMS is secure under both known
ciphertext model and known background model
through rigorous security analysis. We implement
and evaluate VRFMS using a real-world dataset. The
results demonstrate that VRFMS has higher effi-
ciency in search and verification phases, and has
higher search accuracy when compared with exist-
ing schemes.

The remainder of this paper is organized as follows. In
Section 2, we review the existing work related to fuzzy key-
word search and verifiable keyword search. In Section 3,
some preliminaries used in VRFMS are provided. Then the
system model, threat model and design goals in Section 4.
The main idea, algorithm definitions, and concrete construc-
tion of VRFMS are presented in Section 5. Security analysis

and experiment performance are shown in Section 6.
Finally, we conclude this paper in Section 7.

2 RELATED WORK

Song et al. [1] first proposed SE, which effectively solved the
problem of searching over encrypted data and ensured that
the data privacy was not leaked. Since then, researchers
have proposed various SE schemes according to different
demands and preconditions. To be consistent with the dis-
cussed topic, we just introduce the related work about fuzzy
keyword search and verifiable keyword search.

2.1 Fuzzy Keyword Search

Most existing SE schemes only support exact keyword search,
and cannot return expected results when users misspell the
words or only remember the approximate wording of key-
words. So far only part of researches have been carried out on
fuzzy keyword search. Li et al. [14] proposed the first solution
to support fuzzy keyword search. This scheme used edit dis-
tance to indicate the relevance of keywords and utilizedwild-
card � to construct fuzzy keyword sets. For example, a fuzzy
keyword set with an edit distance of 1 from ”cat” is SCAT;1 ¼
fCAT; �CAT; �AT;C �AT;C � T;CA � T;CA�; CAT�g: But
this solution only supports fuzzy single-keyword search,
which plays a very limited role in solving typos and format-
ting errors. Besides, this scheme incurs high storage overhead
and low search accuracy. Kuzu et al. [15] used minhash to
transform keywords, and then utilized jaccard distance to
determine the similarity between keywords to avoid the limi-
tation in the fuzzy single-keyword search. However, none of
above solutions can sort the returned results, which are still
unsuitable for the actual production environment. Although
the scheme [30] designed a two-factor ranking function com-
bining keyword weight with keyword morphology similarity
to rank search results, it cannot avoid the limitation of single-
keyword search.

Wang et al. [16] proposed MFSE (Multi-keyword Fuzzy
Search over Encrypted data), using the architecture of LSH
and BF. This scheme can sort the returned results without
predefining fuzzy keyword sets. Fu et al. [18] improved
scheme [16] by introducing porter stemming algorithm and
keyword transformation algorithm based on the uni-gram
model, which improves the fuzzy search accuracy greatly.
However, only the term frequency is used to sort the results,
which leads to inaccurate sorting results and high computa-
tion overhead. Based on the architecture of LSH and BF,
Zhong et al. [19] constructed a balanced binary tree for the
index and proposed an algorithm to search top-k results,
which improves the search accuracy.

2.2 Verifiable Keyword Search

Most existing SE schemes also do not support result verifi-
cation due to the existence of malicious cloud servers, which
ultimately leads to data privacy leakage. Chai et al. [31]
implemented a verifiable SE scheme for the first time, using
tree-based indexing and hash chain technology. Kurpsawa
et al. [32] proposed a verifiable SE scheme that can achieve
UC(Universal Composability) security. It can verify
whether returned results are modified or deleted, but it
incurs high verification overhead. Jiang et al. [33] proposed

1. The correctness means the results should not be forged or tam-
pered by malicious servers.

2. The completeness denotes that the returned top-k results are
exactly the top-kmost relevant results over all encrypted data.

LI ETAL.: VRFMS: VERIFIABLE RANKED FUZZY MULTI-KEYWORD SEARCH OVER ENCRYPTED DATA 699

a verifiable multi-keyword retrieval scheme. They con-
structed a special data structure to achieve efficient retrieval
and introduced relevance score to sort returned results. Li
et al. [34] verified the correctness and completeness of
encrypted search results by using the keyed-Hash Message
Authentication Code (HMAC) and Paillier encryption. Wan
et al. [21] improved the original homomorphic MAC and
proposed the scheme VPSearch (Verifiable Privacy-preserv-
ing keyword Search). However, these researches only sup-
port the verification of exact keyword search. Tong et al. [25]
also used the adapted homomorphic MAC to achieve result
correctness verification, and it focused on encrypted image
retrieval. Next, we will briefly introduce the existing verifi-
able fuzzy keyword search schemes.

Existing verifiable fuzzy keyword search schemes [26],
[27], [28], [29] still use the edit distance-based architecture,
rather than the architecture of LSH and BF. Wang et al. [26]
first proposed a verifiable fuzzy search scheme. Zhu et al.
[27] implemented a verifiable fuzzy search scheme by intro-
ducing the RSA accumulator. This scheme constructs RSA
accumulators for encrypted data and indexes to achieve the
verification of returned results, which not only achieves the
UC-security [35] but also supports dynamic updates. Ge
et al. [28] generated a verification label for each fuzzy key-
word in advance, but it just verifies the correctness of
returned results. Huang et al. [29] used RSA accumulators
to verify the correctness of the returned results, and
designed a challenge-response mechanism to improve the
verification efficiency, but it still cannot verify the complete-
ness of returned results.

Hu et al. [36] showed that the existing verifiable SE schemes
do not have a universal verification scheme for different
demands, and there is no efficient punishment. Therefore, by
introducing blockchain and smart contract, they ensure the
results are correct and immutable. So users do not need to per-
form additional verification. However, due to high overhead
and expensive cost, it still cannot be used in the actual produc-
tion environment. Table 1 summarizes existing verifiable
schemes in terms of various functionalities.

3 PRELIMINARIES

LSH [16] and BF [18] are used in VRFMS to implement
fuzzy search, and the TF-IDF rule [2] is introduced to rank
queried results. These three techniques will be presented
first. Then, the labelled program [21] and homomorphic
MAC [21] used in the verification phase are introduced.

1) Locality-Sensitive Hashing(LSH) [16]: LSH is an algorithm
for solving the approximate or exact near neighbor search in
high dimensional spaces. LSH hashes input items so that
similar items are mapped to the same buckets with high

probability. A hash function family H is r1; r2;p1; p2ð Þ-sensi-
tive if any two points x, y and h 2 H satisfy:

if d x; yð Þ � d1;P h xð Þ ¼ h yð Þð Þ � p1;

if d x; yð Þ � d2;P h xð Þ ¼ h yð Þð Þ � p2;

where d x; yð Þ is the distance between x and y, P is the proba-
bility that different items are hashed to the same value.

2) Bloom Filter(BF) [18]: A bloom filter consists of a fairly
long binary vector and a series of hash functions. A bloom
filter is a binary vector with m bits, all of which are set to 0
first. When adding an item to the bloom filter, it uses l inde-
pendent hash functions to insert it into the bloom filter by
setting its corresponding bits to 1. To check whether an item
is in the bloom filter, it uses l independent hash functions to
calculate and get l values. If any position is 0 in the l posi-
tions corresponding to the l values, this item does not
belong to the set; otherwise, this item belongs to the set or it
is false positive. The BF incurs less space and search over-
head, but has a certain false recognition and difficulty in
deleting items. Fig. 1 illustrates a simple example of it.

3) Term Frequency-Inverse Document Frequency (TF-IDF)
[2]: It is actually the product of the TF value and the IDF
value. It is a statistical method used to evaluate the impor-
tance of a word in a file collection. It is often used as a
weighting factor in information retrieval and text mining.
There is a hypothesis that the most meaningful words for
distinguishing documents should be those that appear fre-
quently in a single document and less frequently in other
documents in the entire file collection. The value of TF-IDF
is shown in Eq. (1). fw;Fi is the number of times the keyword
w appears in the file Fi, Fij j is the total number of keywords
in the file Fi, Fj j is the total number of file in the file collec-
tion F , and j : w 2 Fj

� ��� �� is the total number of file collec-
tion containing the keyword w.

Scorew;Fi ¼ TFw;Fi � IDFw

¼ fw;Fi
Fij j � log

Fj j
j : w 2 Fj

� ��� ��þ 1
:

(1)

TABLE 1
Functionality Comparison Between Our Scheme and Previous Schemes

Scheme VPSearch[21] scheme [26] VDFS [27] VFKS [28] VESFS [29] VRFMS

Multi-Keyword Search ✓ ✗ ✗ ✗ ✗ ✓
Architecture of Fuzzy Search - edit distance edit distance edit distance edit distance LSH and BF
Dynamic Update ✓ ✗ ✓ ✗ ✗ ✓
Verification Correctness ✓ ✓ ✓ ✓ ✓ ✓
Verification Completeness ✓ ✗ ✗ ✗ ✗ ✓

Fig. 1. A simple example of bloom filter. We assume m=12, l=2, {h1,h2}
are two hash functions and {x,y,z} is a set. The user wants to query the
keyword w, and the result shows that w does not exist in the set.

700 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

4) Labelled Program [21]: The labelled program is composed
of a function f and n input variables with each input
assigned a label Li. Li is a unique string to label the variable
of the function f . For example, a class outsources its
students’ report cards R to the cloud server and then asks
the cloud server to compute f as the average score of all stu-
dents. Then Li can be constructed as (”the ith student’s
score”), where i is the index of a student. Then the score si
can be authenticated with respect to the label Li, which
essentially binds the datamwith the corresponding label.

5) Homomorphic MAC [21]: Any message mi is encrypted
as a degree-1 polynomial y xð Þ, namely y 0ð Þ ¼ mi and y að Þ ¼
gi, where a and gi are only known to the verifier. That is,

y xð Þ ¼ mi þ gi �mið Þ � x=a (2)

is established. Since the cloud server needs to perform some
basic arithmetic operations when calculating function f ,
homomorphic encryption needs to be introduced for direct
calculation over encrypted data. Then the verifier can verify
Eq. (4) on condition that Eq. (3) is established. Thus, this
technology can verify whether the cloud server honestly
executes user-defined search algorithms.

f g1; . . . ; gnð Þ ¼ y að Þ: (3)

f m1; . . . ;mnð Þ ¼ y 0ð Þ: (4)

Since the traditional homomorphic MAC only supports
the calculation of a finite field, VRFMS uses the RealHom-
MAC proposed in paper [21]. The improvement of Real-
HomMAC is to treat all messages as real numbers encoded
by a format like the double-precision floating point format
defined in IEEE 754 standard. That is, the new algorithm
can handle real numbers while retaining the homomor-
phism of the original algorithm. The concrete algorithms of
RealHomMAC can be referred to the reference [21].

4 PROBLEM FORMULATION

We formulate the system model, threat model, and design
goals of VRFMS, then introduce some preliminaries.

4.1 System Model

The system model of VRFMS consists of four entities,
namely data owner, data users, proxy server, and cloud
server, as shown in Fig. 2. Specifically, the role of each entity
is shown as follows:

1) Data owner. The data owner is responsible for gener-
ating the secret key and managing data users’ query
permissions.

2) Data users. Data users make search queries based on
the queried keywords.

3) Proxy server. The proxy server is responsible for gen-
erating verifiable indexes, encrypting files, verifiable
trapdoors, and then verifying the correctness and
completeness of returned results.

4) Cloud server. The cloud server executes search opera-
tions and returns top-k query results and corre-

In our systemmodel, the data owner has a file collection F ¼
ff1; f2; . . . ; fng. He needs to encrypt these files and then out-
source them to the cloud server. Because the data owner’s
computing power is limited, the file collection will be trans-
ferred to the proxy server(Step 	1), which will be encrypted
as file ciphertext set C. To efficiently retrieve the encrypted
data, the proxy server constructs secure and retrievable
index set I. To verify results returned by the cloud server,
the proxy server will generate verification tags based on the
encrypted indexes. Then encrypted data C and verifiable
indexes will be outsourced to the cloud server(Step	2). Only
data users authorized by the data owner can communicate
with the proxy server directly(Step 	3). When a certain data
user wants to retrieve the relevant files based on the queried
keywords, he sends the queried keywords to the proxy
server(Step 	4). The proxy server generates a verifiable trap-
doorQ and sendsQ to the cloud server(Step	5). After receiv-
ing the trapdoor Q, the cloud server retrieves top-k search
results according to Q and generates one proof for each
search result (Step	6). Then the cloud server sends the top-k
search results and their proofs to the proxy server. The proxy
server verifies whether the results are valid. If they are
invalid, it is considered that the cloud server has malicious
behavior and the proxy server will reject the results. Other-
wise, it means that the cloud server honestly computes over
all encrypted data, and the proxy server returns the results to
the data user(Step 	7). Note that we assume that the file
updating does not introduce newmeaningful keywords.

4.2 Threat Model

In our system architecture, data owner, authorized data
users, and proxy server are assumed to be fully trusted in
the entire process. Different from the traditional honest-but-
curious cloud servers3, the cloud server in VRFMS is mali-
cious, which may execute a fraction of search operations or
forge some results due to various interest incentives such as
saving storage and computation resources.

As analyzed in existing SE schemes, there are two kinds
of threat models according to the knowledge available to
the cloud server:

Fig. 2. System architecture of VRFMS.

3. The cloud server honestly executes established protocols but may

LI ETAL.: VRFMS: VERIFIABLE RANKED FUZZY MULTI-KEYWORD SEARCH OVER ENCRYPTED DATA 701

sponding proofs. be curious to deduce some sensitive information.
.

1) Known ciphertext model: the cloud server only knows
the encrypted files and the encrypted indexes;

2) Known background model: the cloud server also knows
some additional background knowledge, e.g., the
cloud server may record the search results corre-
sponding to each trapdoor, and statistics of the out-
sourced documents or relationship between
different trapdoors.

4.3 Design Goals

VRFMS is designed to achieve the following goals:

1) Verification. VRFMS should verify both the correct-
ness and completeness of returned results.

2) Multi-keyword Search. VRFMS should support fuzzy
multi-keyword search over encrypted data, which
can not only improve the accuracy of fuzzy search
but also increase user satisfaction.

3) Ranking. The returned results should be sorted
according to the relevance scores, which can reduce
the time overhead caused by decrypting irrelevant
information.

4) Privacy-Preserving. The cloud server cannot obtain
any plaintext information from the encrypted data,
encrypted indexes, and encrypted trapdoors gener-
ated during each query.

5) Efficiency. In VRFMS, the proxy server should be able
to efficiently verify the results returned by the cloud
server, and the cloud server should be able to effi-
ciently execute the search process.

5 PROPOSED VRFMS

In this section, we present the construction of VRFMS. We
first give the main idea and the algorithm definitions of
VRFMS, then introduce each algorithm in detail. Finally, we
discuss the specific methods used in VRFMS to improve the
accuracy of fuzzy search and implement completeness
verification.

5.1 Main Idea

Our VRFMS is built on top of the LSH and BF architecture.
The main idea of this architecture is shown in Fig. 3. In this

architecture, a file Fi is transformed to an index Ii. The
index Ii, containing all the keywords in Fi, is a m-bit BF. To
support fuzzy multi-keyword search, VRFMS first trans-
forms the keywords to a bi-gram based vector and then
uses LSH functions to insert the keywords to index Ii. Thus,
the inner product between index Ii and trapdoor Q can rep-
resent the correlation between a certain file Fi and the que-
ried keywords Wk. For a certain query, the cloud server
ranks the results in terms of the inner product between each
index Ii and trapdoor Q, and returns the top-k results to the
data user. Therefore, VRFMS implements the ranked fuzzy
multi-keyword search.

The verifiability of VRFMS is based on the homomorphic
MAC technique. Let M be the size of the encrypted index.
Each element ij in the index Ii ¼ ði1; . . . ; iMÞ is encoded as a
degree-1 polynomial yi;jðxÞ such that yi;jð0Þ ¼ ij; yi;jðaÞ ¼
ri;j, where a; ri;j are secrets known only to the verifier. In
this way, the authentication tag for the index Ii is a polyno-

mial vector sIi ¼ ðyð1Þi ; . . . ; y
ðmÞ
i Þ, where y

ðjÞ
i ¼ ðij; ðri;j �

ijÞ=aÞ is composed of the coefficients of corresponding poly-
nomial yi;jðxÞ and we set ~rIi ¼ ðri;1; . . . ; ri;MÞ. Similarly, the
authentication tag for the trapdoor Q is sQ ¼ ðyð1ÞQ ; . . . ; y

ðMÞ
Q Þ,

where y
ðjÞ
Q ¼ ðqj; ðrQ;j � qjÞ=aÞ is composed of the coeffi-

cients of corresponding polynomial yi;jðxÞ and we set ~rQ ¼
ðrQ;1; . . . ; rQ;MÞ. As elementary arithmetic operations over
polynomials are homomorphic and the fuzzy keyword
search function f is actually the inner product composed of
addition and multiplication operations, the cloud server can
perform inner product of the index’s authentication tag and
trapdoor’s authentication tag to obtain a 2-degree polyno-
mial gðxÞ ¼ y0 þ y1xþ y2x

2, i.e., fðsIi ; sQÞ ¼ ðy0; y1; y2Þ.
Thus, we can use fðIi; QÞ ¼ gð0Þ, fð~rIi ;~rQÞ ¼ gðaÞ to verify
whether the cloud server honestly executes inner product of
correct indexes and correct trapdoor. A random challenge
technique based on ranking is proposed to greatly improve
the efficiency of completeness verification.

5.2 Algorithm Definitions

VRFMS consists of seven polynomial-time algorithms
(KeyGen; BuildIndex; Trapdoor; Auth; Search; Verify; Update).

1) KeyGen 1�;m
� � ! SK is a probabilistic key generation

algorithm run by the data owner. It takes a random
secure parameter � and index length m as input, and
outputs a secret key set SK ¼ K;a;M1;M2; Sð Þ.

2) BuildIndex F;SKð Þ ! Encsk Ið Þ is an index building
algorithm run by the proxy server. This algorithm
takes the file collection F and secret key SK as input,
and outputs encrypted indexesEncsk Ið Þ ¼ Encsk I1ð Þ;f
. . . ; Encsk Inð Þg, n is the number of files in the file
collection.

3) Trapdoor Wk; SKð Þ ! Encsk Qð Þ is a trapdoor genera-
tion algorithm run by the proxy server. This algo-
rithm takes the collection of queried keywords
Wk ¼ w1; . . . ; wk and secret key SK as input, and out-
puts the encrypted trapdoor Encsk Qð Þ.

4) Auth SK;L;Encsk Iið Þ or Encsk Qð Þð Þ ! sIi or sQ is an
authentication tag generation algorithm run by the
proxy server. It takes the secret key SK, string L and
encrypted index or encrypted trapdoor as input, and
outputs the authentication tag sIi or sQ.

Fig. 3. The main idea of LSH and BF architecture. File Fi is transformed
to the m-bit index Ii by using l LSH functions, and queried keywords Wk

are converted to trapdoor Q using the same l LSH functions. The inner
product between index Ii and trapdoor Q can be considered the correla-
tion between a certain file Fi and the queried keywords Wk. The higher
the inner product, the more relevant the file Fi is to the queried keywords
Wk.

702 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

5) Search f; sI ; sQ

� � ! s is a deterministic fuzzy key-
word search algorithm run by the cloud server. It
takes fuzzy keyword search function f , index tag set
sI and trapdoor tag sQ as input, and outputs the
results s ¼ s0; . . . ; skð Þ.

6) VerifyðSK;P; scoi; siÞ is a verification algorithm run
by the proxy server. It takes the secret key SK, fuzzy
keyword search function f , message ms as well as
results s, and outputs accept or reject.

7) Update Ftemp; SK
� �

. This algorithm takes the file to be
updated Ftemp and secret key SK as input. This algo-
rithm consists of three operations such as file addi-
tion, file deletion and file modification.

5.3 Concrete Construction

In this section, we will introduce each algorithm in VRFMS.

1) KeyGenð1�;mÞ: According to the security parameters
�, the data owner invokes RealHomMac:KeyGen 1�

� �
to generate the secret key K;að Þ. According to the
index length m, two invertible matrices M1;M2ð Þ 2
R mþ2ð Þ� mþ2ð Þ and S 2 0; 1f gmþ2 are generated ran-
domly. The final secret key is SK ¼ K;a;M1;M2; Sð Þ,
andwill be sent to the proxy server.

2) BuildIndexðF; SKÞ: The index building algorithm
includes the following steps:
� Data preprocessing: For a given file collection F ¼

f1; f2; . . . ; fnf g, the data owner directly passes it
to the proxy server. The proxy server first
extracts keywords from F to form a keyword set
K ¼ k1; k2; . . . ; kNf g. Then it uses the Porter
stemming algorithm [37] to ascertain the root of
the words, and gets the stemming keyword set
ST ¼ st1; st2; . . . ; stNf g. This step corresponds to
the stemming part in Fig. 4. The proxy server cal-
culates the TF and IDF values of the keyword
according to ST later, so as to analyze the rele-
vance of the queried keywords and the files.

� Keyword transformation: The proxy server first uses
the improved keyword transformation method to
transform each keyword into a bi-gram set BS,

where the appearance of the same bi-gram is con-
sidered. For example, the bi-gram set BS of the
keyword ‘‘represent00 is BS ¼ fre1; ep1; pr1; re2;
es1; se1; en1; nt1g. Then, proxy server transforms
the setBS into a fixed-length binary vectorBV , as
shown in the keyword conversion stage in Fig. 4.

� Construction of BF� based index: For each docu-
ment fi, the proxy server first generates a m-bit
bloom filter Ii and initializes each bit to 0. Then,
for each keyword wj 2 fi, using the bi-gram vec-
tor BVj as the input of l LSH functions, the proxy
server calculates corresponding positions in Ii
and sets each of them to TFi;j=l, where TFi;j ¼
1þ jwjj=jfij is the wj’s term frequency in the doc-
ument fi, jwjj is the number of keyword wj in fi,
and jfij is the number of total keywords in fi.
Note that if different keywords are hashed into
the same position, we use their average value as
the insert, as the scheme [18] does. For example,
if the document fi is composed of keywords
w1; w2 with TFi;1 ¼ 1:4; TFi;2 ¼ 1:6 and l ¼ 2 LSH
functions are used to map the two keywords’ bi-
gram vectors to positions 1,6 and 3,6, respec-
tively, then the TF values in positions 1,3,6 are
TFi;1=2 ¼ 0:7; TFi;2=2 ¼ 0:8; ðTFi;1=2þ TFi;2=2Þ=2
¼ 0:75, respectively. The effect is shown in the
index building part of Fig. 4, but it is directly
set to 1 for simplicity. Finally, Ii is expanded
to (m+2)-bit, and the expansion values are "1
and 1.

� Index encryption: The index vector Ii is a vector of
length m+2. The proxy server will encrypt it to I 0i
and I 00i to protect the index privacy. The encryp-
tion follows the rule: set i0j ¼ i00j ¼ ij if sj 2 S is 1;
otherwise i0j ¼ 1

2 ij þ r; i00j ¼ 1
2 ij � r, where r is a

random number. Then the proxy server encrypts
I 0i and I 00i into MT

1 � I 0i;MT
2 � I 00i

� �
.

Example. We show the index building process by an
instance. For simplicity, we assume a file has two keywords
”ranked” and ”searched”, namely K ¼{ranked, searched}.
We set m= 10, S = [1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1] and assume
M1;M2ð Þ are all identity matrixes. K is first stemmed to
ST ¼ {rank, search}. The keyword ”rank” is transformed to
the bi-gram set BS1 ¼ ra1; an1; nk1f g, and the 14th position
of BV1 is set to 1 as the item an1 exists in BS1. BS2 and BV2

are generated for the keyword ”search” in the same method.
Then, we use BV1 and BV2 as two inputs of LSH functions
respectively, and set calculation results’ positions in Ii to its
keyword’s TF value 0.5. Thus we have Ii = [0.5, 0, 0, 0, 0, 0.5,
0, 0.5, 0, 0.5], and it is expanded to Ii = [0.5, 0, 0, 0, 0, 0.5, 0,
0.5, 0, 0.5, 0.5, 1] using values 0.5 and 1. Subsequently, Ii is
split to I 00i as well as I 00i by using S, and I 0i = [0.5, 0.1, 0.1, 0,
0.1, 0.35, 0, 0.5, 0.1, 0.35, 0.5, 1], I 00i = [0.5, -0.1, -0.1, 0, -0.1,
0.15, 0, 0.5, -0.1, 0.15, 0.5, 1]. Finally, I 0i and I 00i are encrypted
with the matrices M1;M2ð Þ, and the final result is
Encsk Iið Þ= MT

1 � I 0i;MT
2 � I 00i

� �
= [0.5, 0.1, 0.1, 0, 0.1, 0.35, 0,

0.5, 0.1, 0.35, 0.5, 0.5, -0.1, -0.1, 0, -0.1, 0.15, 0, 0.5, -0.1, 0.15,
0.5, 1].
3) Trapdoor Wk; SKð Þ: The trapdoor generation algo-

rithm includes the following steps:

Fig. 4. The architecture of LSH and BF. It mainly represents the index
building phase and searching phase. It can be divided into stemming
keyword, keyword transformation, index building or trapdoor generation
and search.

LI ETAL.: VRFMS: VERIFIABLE RANKED FUZZY MULTI-KEYWORD SEARCH OVER ENCRYPTED DATA 703

� Keyword transformation: It is exactly the same as the
first two steps of index building, preprocessing
keywords and transforming them to the bi-gram
based vector BV .

� Construction of BF� based trapdoor: The proxy
server first generates an m-bit bloom filter Q and
initializes each bit to 0. Then, the proxy server
uses l LSH functions to map each queried key-
word’s bi-gram vector into the bloom filter Q
and set the corresponding positions of Q to its
IDF value. Finally, the proxy server multiplies
the trapdoor vector Q by "2, and expands it to a
(m+2)-bit vector by expanding "2 and t.

� Trapdoor encryption: The trapdoor vectorQ is a vec-
tor of lengthm+2. The proxy server will encrypt it
to Q0 and Q00 to protect trapdoor privacy. The
encryption follows the rule: set q0j ¼ q00j ¼ qj if sj 2
S is 0; otherwise q0j ¼ 1

2 qj þ r; q00j ¼ 1
2 qj � r, where

r is a random number. Then the proxy server
encryptsQ0 andQ00 into M�1

1 �Q0;M�1
2 �Q00� �

.

Example. We show the trapdoor generation process by an
instance. We assume the queried keywords are ”ranked”
and ”seerch”. {BS1; BV1; BS2; BV2} are generated using the
stemmed keywords {rank, seerch} by the samemethod in the
previous example. Then, we use BV1 and BV2 as two inputs
of LSH functions respectively, and set calculation results’
positions in Q to its keyword’s IDF value log(0.5)=-0.3. Then
Q= [0, -0.3, 0, 0, 0, -0.3, 0, -0.3, 0, -0.3], and it is expanded to
Q= [0, -0.3, 0, 0, 0, -0.3, 0, -0.3, 0, -0.3, 1, -0.1] using values 1
and -0.1. Subsequently, Q is split to Q0 = [0.1, -0.3, 0, 0.1, 0,
-0.3, 0.1, -0.05, 0, -0.3, 0.6, 0.05] and Q00 = [-0.1, -0.3, 0, -0.1, 0,
-0.3, -0.1, -0.25, 0, -0.3, -0.6, -0.15] by using S. Finally, Q0 and
Q00 are encrypted to Encsk Qð Þ= M�1

1 �Q0;M�1
2 �Q00� �

= [0.1,
-0.3, 0, 0.1, 0, -0.3, 0.1, -0.05, 0, -0.3, 0.6, 0.05, -0.1, -0.3, 0, -0.1, 0,
-0.3, -0.1, -0.25, 0, -0.3, -0.6, -0.15].
4) AuthðSK;EncskðIiÞ or EncskðQÞÞ: This algorithm gen-

erates an authentication tag for each encrypted index
EncskðIiÞ or the encrypted trapdoor EncskðQÞ. Specifi-
cally, the proxy server first labels each item of
EncskðIiÞ or EncskðQÞ. For example, EncskðIiÞ½j
 is
labeled as LEncskðIiÞ;j: ‘‘the jth item in the ith index I 00i ;
EncskðQÞ½j
 is labeled asLEncskðQÞ;j: ‘‘the jth item in the
trapdoor Q00. Then, for each item EncskðIiÞ½j
 in the
encrypted index EncskðIiÞ, the proxy server invokes
RealHomMAC:Auth sk; LEncskðIiÞ;j; EncskðIiÞ½j

� �
to out-

put ðyðjÞ0 ; y
ðjÞ
1 Þ ¼ ðEncskðIiÞ½j
; ðri;j �EncskðIiÞ½j
Þ=aÞ,

where ri;j ¼ FKðLEncskðIiÞ;jÞ. In this way, the proxy
generates the authentication tag sIi for the encrypted
index EncskðIiÞ. Similarly, the proxy server generates
the authentication tag sQ for the encrypted trapdoor
EncskðQÞ.

5) SearchðEncskðIiÞ; EncskðQÞ; sIi ; sQÞ: For each
encrypted index EncskðIiÞ ð1 � i � nÞ, the cloud
server first computes the inner product of it and
encrypted trapdoor EncskðQÞ to obtain a relevance
score scoi, i.e., scoi ¼ fðEncskðIiÞ; EncskðQÞÞ ¼
EncskðIiÞ> � EncskðQÞ. Then, the cloud server selects
k search results with top-k relevance scores. Finally,
for each of these k search results such as fi, the cloud

server invokes RealHomMAC:Eval f; sIi ; sQ

� �� �
to out-

put its proof si ¼ ðy0; y1; y2Þ in Fig. 5.
6) VerifyðSK;P; scoi; siÞ: Let P ¼ ðf; LEncskðIiÞ;

LEncskðQÞÞ. The proxy server invokes
RealHomMAC:VerðSK;P; scoi; siÞ to verify
scoi’s correctness according to Eq. (5). If the
Eq. (5) holds, the proxy server accepts fi as
a search result; otherwise it rejects fi.

scoi ¼ y0;

fð~rIi ;~rQÞ ¼
X2
j¼0

yja
j: (5)

7) UpdateðFtemp; SKÞ: This algorithm includes three
operations: adding file, deleting file and modifying
file. When adding a file, the proxy server encrypts
the file, invokes Auth to generate an authentication
tag for it, and finally outsources it to the cloud
server. When deleting a file, the proxy server inter-
acts with the cloud server to delete the correspond-
ing ciphertext and index. As for file modification, it
is equivalent to deleting the original file and then
adding a new file.

5.4 Discussion

This section introduces some discussions of VRFMS in
terms of search accuracy and completeness verification of
returned results.

5.4.1 Accuracy of Fuzzy Search

In the architecture of LSH and BF, if the original keyword
and its fuzzy keyword are calculated with the same l LSH
functions, the more the same results, the higher the final
similarity score. Therefore, the most important factor that
affects the accuracy of fuzzy keyword search in this archi-
tecture is the similarity between the original keyword and
the fuzzy keyword. However, using the uni-gram method
to transform keyword cannot reflect the order between key-
words, e.g., keywords ”eat” and ”tea” will be transformed
to the same vector using uni-gram, which will reduce the
search accuracy.

Thus, we propose an improved bi-gram keyword trans-
formation method as shown in Algorithm 1. Different from
the traditional bi-gram keyword transformation method,
the improved one considers the appearance of the same bi-
gram. For example, keyword ‘‘represent00 is transformed to

Fig. 5. Fuzzy keyword search function f combined with the RealHom-
MAC algorithm.

704 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

the bi-gram set re1; ep1; pr1; re2; es1; se1; en1; nt1f g. In prac-
tice, the length of the vector can be determined by the actual
needs of data users. So, the accuracy of fuzzy keyword
search is improved by using the bi-gram based keyword
transformation algorithm. With this method, even if the
keyword is misspelled, the vector’s distance between the
correct spelling keyword and the misspelling one will be
smaller. So, the hashing result will be the same, which will
improve search accuracy. In VRFMS, we introduce the TF-
IDF rule to sort the returned results, which can return the
most relevant results.

Algorithm 1. Generate Bi-Gram Based Keyword Vector

Input: Stemming keyword set ST
Output: Bi-gram based vector set V
1: for each STi in ST do
2: Set VSTi all the position to 0 in vector 0; 1f g2�262 ;
3: Compute sti¼length STið Þ;
4: generate a vector yjy j½
 ¼ 1; 0 < j < stif g;
5: for each STi j; jþ 1½
 in STi do
6: for k ¼ 1 : j� 1 do
7: if STi k; kþ 1½
¼STi j; jþ 1½
 then
8: y[j]++;
9: end if
10: end for
11: STTemp j½
¼STi j; jþ 1½
þ y j½
;
12: end for
13: for each STTemp j½
 in STTemp do
14: Set VSTi all corresponding positions to 1;
15: end for
16: add the vector VSTi for stemming keyword STi to V;
17: end for
18: return V=VSTi jSTi 2 ST for all stemming keywords in set

ST .

5.4.2 Completeness Verification

One of the most important parts of VRFMS is the result veri-
fication, which is mainly divided into two parts: correctness
verification and completeness verification. The correctness
verification is realized by the homomorphic MAC technol-
ogy. However, this algorithm cannot verify the complete-
ness of the returned results.

Since it is unrealistic for the cloud server to return all
encrypted results when the data are fairly large, most solu-
tions will sort the results and then return the top-k results,
note that k is far less than the number of files. Assuming
that the cloud server is malicious, it may only calculate part

of the data, and return the top-k results of them. In this case,
since the proxy server does not know all relevance scores, it
is difficult to find this malicious behavior. In order to pre-
vent it, the simplest method is to verify the relevance scores
of other files. Only when the relevance scores of other files
are lower than those of top-k results, the top-k results
returned by the cloud server are considered correct and
complete. Suppose that the data owner outsources n files to
the cloud server, and the data user only wants to obtain top-
k results when searching, where k is far less than n. The
cloud server only detects a fraction of u 2 0:1ð
 part and
then returns the top-k results. The proxy server randomly
selects � remaining files and asks the cloud server to return
the relevance scores. Therefore, the probability of detecting
the malicious behavior of the cloud server is

P ¼ 1� 1� 1� uð Þk
u n� kð Þ

� ��

: (6)

According to Eq. (6), we plot the influence of various param-
eters on the probability P of detecting malicious behavior in
Fig. 6. Fig. 7a shows that when � ¼ 600; u ¼ 0:8, the detection
probability P gradually increases with the increase of k.
Fig. 7b shows when � ¼ 600; n ¼ 50000, with the increase of
u, the detection probability P gradually decreases to 0. Fig. 7c
shows that when k ¼ 300; n ¼ 30000, with the increase of �,
the detection probability P gradually increases.

As can be seen from Fig. 6, only if � and k are large, the
probability of detecting malicious behavior is higher than
90%, which is very inefficient. Therefore, we propose a ran-
dom challenge technique based on ranking. The details are
as follows: First, when the cloud server performs search
operation, it sorts the identities of all accessible outsourced

Fig. 6. P as a function, n, k, � and u are randomly changed.

Fig. 7. Time cost of index building in a single file.

LI ETAL.: VRFMS: VERIFIABLE RANKED FUZZY MULTI-KEYWORD SEARCH OVER ENCRYPTED DATA 705

documents according to their relevance scores, and returns
the sorted list along with the top-k search results. Then, the
proxy server randomly selects � files, and computes their rel-
evance scores. If the relevance scores of these documents are
all lower than those of the top-k results and the order of these
documents’ identities ranked according to their relevance
scores is correct, it is convinced that the cloud server has exe-
cuted the search algorithm honestly and the top-k results are
complete with the probability P ¼ 1� ðp�Þ!=�!, where p is
the faction of documents the cloud servers retrieves. It can be
seen that the detection probability has nothing to do with the
total number of files n and k, and it is only related to the part
of calculated p and challenging samples �. Let � ¼ 10; p ¼
0:8, the final detection probability is about 99.0%. Compared
with Fig. 7b, under the same conditions, the detection proba-
bility is only 20%. Therefore, the random challenge technol-
ogy based on ranking not only improves the detecting
probability but also improves the efficiency of completeness
verification. Due to the existence of detection technology, the
cloud server will honestly execute users’ queries and return
integral results. That is, the random challenge technology
based on ranking successfully implements the completeness
verification of returned results.

6 SECURITY AND PERFORMANCE ANALYSIS

We first analyze the security of VRFMS, then evaluate the
theoretical performance and actual performance.

6.1 Security

In this section, we proof our scheme is secure in both known
ciphertext and known background knowledge. Before giv-
ing the proof, we introduce some notations.

1) H historyð Þ ¼ F; I;Wkð Þ. F is a file collection, I is the
index andWk ¼ w1; . . . ; wk are the queried keywords.

2) V(H)¼ Encsk Fð Þ; sI ; sWk

� �
. V(H)(View) is the

encrypted results of H with the secret key sk. The
cloud server only knows V(H).

3) Tr(H). It is a set of traces of queried keywords
Tr w1ð Þ; Tr w2ð Þ � � � ; Tr wkð Þf g. Exactly, Tr wið Þ ¼
fj; sj
� �

wi�fj
; 1 � j � Fj j

n o
is the relevance score

between the file fj and the trapdoor wi.

Theorem 1. Our scheme is secure under the known ciphertext
model.

Proof. In the known ciphertext model, given two histories
with the same trace, if the cloud server cannot distinguish
which of them is generated by the simulator, it cannot
learn additional information from the V(H).

We adopt a similar simulation-based proof used in
paper [16]. Let S be a simulator that can simulate a view
V 0 Hð Þ indistinguishable form a cloud server’s view V(H),
then the S can conduct the following process:

1) S selects a random f 0
i 2 0; 1f g fij j; fi 2 F; 1 � i �

Fj j, and outputs F 0 ¼ ff 0
i ; 1 � i � Fj jg.

2) S generates the secret key sk0 ¼ K0;a0;M 0
1;M

0
2; S

0� �
randomly by the security parameterm and �.

3) To generate s0
I , S first generates a m-bit vector for

each file as the index. Then S invokes BuildIndex

algorithm to get Encsk0 W 0
k

� � ¼ Encsk0 w0
1

� �
; . . . ;

�
Encsk0 w0

k

� �g. Finally, S invokes Auth algorithm to
get the final output s0

I .
4) To generate s0

Wk
, S generates w0

i by wi, ensures that
the number of 1s is same. So S gets W 0 ¼
w0

i; 1 � i � k
� �

, and then encrypts it to
Encsk0 W 0

k

� � ¼ Encsk0 w0
1

� �
; . . . ; Encsk0 w0

k

� �� �
. At

last, S invokes Auth algorithm to generate s0
Wk
.

5) S outputs V 0 ¼ ðF 0; s0
I ; s

0
Wk
Þ.

The secure indexes and trapdoors use the same
method to generate as the one that the cloud server has.
We claim that no probabilistic polynomial-time (P.P.T.)
adversary can distinguish between the view V 0 Hð Þ and
V Hð Þ. Particularly, due to the semantic security of the
symmetric encryption, no P.P.T adversary can distin-
guish between Encsk0 Fð Þ and Encsk Fð Þ. And the indistin-
guishability of indexes and trapdoors is based on the
indistinguishability of the secure kNN encryption and
the random number introduced in the index building
and trapdoor generation phases.

Based on these aspects, we observe that VRFMS is
secure in the known ciphertext model. This completes
the proof of Theorem 1. tu
In addition, if FK : f0; 1g� ! R� is a pseudo-random

function and the secret key ðK;aÞ keeps in secret,
RealHomMAC is secure against forgeries who may forge or
temper authentication tag to return false results, which has
been proved in the scheme [25]. The main idea is that each
real number can be encoded into an integer in the finite
field, and the scheme [38] has rigorously proved the security
of HomMAC in finite fields if FK : f0; 1g� ! Zp is an pseudo-
random function and ðK;aÞ keeps in secret. Therefore,
RealHomMAC is secure against forgeries if FK : f0; 1g� ! R�

is a pseudo-random function and the secret key ðK;aÞ keeps
in secret.

6.2 Performance

6.2.1 Theoretical Performance

This section shows the theoretical performance of VRFMS.
In the following analysis, n is the number of files and m is
the length of the index/trapdoor.

BuildIndex. This stage is mainly divided into two parts:
generating plaintext index and encrypting index. The time
cost required to generate plaintext index is mainly deter-
mined by the number of keywords contained in the file. The
index encryption mainly depends on the matrix multiplica-
tion calculation, so its time complexity is O m2nð Þ. This stage
only needs to be performed once, so it will not affect the
running performance.

Trapdoor. This stage also mainly includes the matrix mul-
tiplication calculation, so its time cost is O m2ð Þ for each
query.

Auth. The time cost of generating the verification label is
proportional to the index length m. So the time complexity
of generating the verification label for each index or trap-
door is O mð Þ. This process only needs to be performed
once, so it will not affect the running performance.

Search. This stage is to calculate the inner product of the
trapdoor and all the indexes, thus its time complexity is
O mn .

706 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Verify. The time complexity of verifying the correctness of
the top-k results is O mkð Þ. As the phase for verifying the
completeness of the results needs to sort all the results, so
its time complexity is O nlognð Þ.

In Table 2, we perform the efficiency comparison in the
following aspects: index building, trapdoor generation,
search and verification. We denote n as the number of files
in the cloud, N as the number of exact keywords, M as the
maximum number of fuzzy keywords, m as the length of
index in VRFMS, and k as the number of results to be veri-
fied. VRFMS’s index building time complexity is O m2nð Þ,
those of other verifiable schemes areO NMð Þ. VRFMS’s trap-
door generation time complexity is O m2ð Þ, those of other
verifiable schemes are O Mð Þ. VRFMS’s search time com-
plexity is O mnð Þ, those of other verifiable schemes are
O MlogNð Þ. VRFMS’s verification time complexity is O mkð Þ,
those of other verifiable schemes are O kð Þ. m can be consid-
ered as a constant in VRFMS, and n � N � M. Therefore,
VRFMS is more efficient than existing schemes in the phases
of index building, trapdoor generation and search.

6.2.2 Experimental Performance

In this section, we estimate the overall performance of
VRFMS using Java language on a 64-bit Windows 10 Home
Chinese version server with Intel Core i7-8700 CPU running
at 3.20GHz. We use the Request For Comment (RFC) data-
set4. We randomly select 3000 files to form the dataset, and
extract 65277 keywords in total. The maximum number of
keywords in a single file is 3819, and the minimum is 113.
We set the number of LSH functions l=30, and the length of
the index/trapdoorm= 8000. Similar to the original scheme,
we randomly select one letter among the keywords and then
replace it with another letter to construct fuzzy keywords.

This section mainly compares VRFMS with the existing
verifiable fuzzy keyword search schemes [26], [28], [29] in
terms of index building, fuzzy search, and verification.

Index Building. The single index/trapdoor generation in
VRFMS mainly includes generating plaintext vector, encrypt-
ing vector, and generating verification tags for them. Fig. 7
shows that in a single index, as the number of keywords
increases, the time cost of generating plaintext vector gradu-
ally increases, as this process needs to calculate the keywords
individually. The time cost of the vector encryption and gener-
ation verification tags changes within a range as the number of
keywords increases. This is because the time cost of these two
stages is only related to the length of the vector m, regardless
of the number of keywords in the file. There is no comparison

with other existing schemes in this figure because the index
generationmethod is not the same. Fig. 8 shows that when the
program initializes to generate indexes for all files, as the num-
ber of files increases, the time cost of the entire process of index
generation increases. As shown in this figure, VRFMS has the
lowest time-consuming during the index generation stage.
This is because the architecture of fuzzy keyword search is dif-
ferent. VRFMS’s time-consuming index generation is mainly
related to the number of files.However, those of other schemes
are mainly related to the number of keywords over all files.
And the time overhead of VESFS [29] is the largest, as it uses
the RSA accumulator for verification.

Fuzzy Search. Since the existing verifiable fuzzy keyword
search schemes only support fuzzy single-keyword search, so
we use the fuzzy single-keyword search to conduct compara-
tive experiments. It can be seen from Fig. 9 that the time
required for the search stage increases linearly with the num-
ber of files in the cloud server. VRFMS is optimal in efficiency,
and when the number of files is 3000, the search stage takes
only 3.5 seconds, which is far lower than those of other
schemes. The time cost of the scheme [26] and VFKS [28] are

TABLE 2
Computation Complexities in Various Schemes

Scheme scheme [18] scheme [26] VDFS [27] VFKS [28] VESFS [29] VRFMS

Index Building Cost O m2nð Þ O NMð Þ O NMð Þ O NMð Þ O NMð Þ O m2nð Þ
Trapdoor Generation Cost O m2ð Þ O Mð Þ O Mð Þ O Mð Þ O Mð Þ O m2ð Þ
Search Cost O mnð Þ O MlogNð Þ O MlogNð Þ O Mð Þ O MlogNð Þ O mnð Þ
Verification Cost - O kð Þ O kð Þ O kð Þ O kð Þ O mkð Þ
1We denote n as the number of files in the cloud, N as the number of exact keywords, M as the maximum number of fuzzy keywords, m as the length of index in
VRFMS, and k as the number of results to be verified.

Fig. 8. Time cost of index building in file set.

Fig. 9. Search time of different schemes.
4. RFC dataset contains almost all important information about the

Internet. Available: http://www.ietf.org/rfc.html.

LI ETAL.: VRFMS: VERIFIABLE RANKED FUZZY MULTI-KEYWORD SEARCH OVER ENCRYPTED DATA 707

http://www.ietf.org/rfc.html

similar, and after the number of files is greater than 1000, the
increase in search time is significantly reduced. This is because
in these two schemes, one keyword corresponds to one index,
so the search time is positively correlated with the number of
keywords. As the number of files increases, the growth rate of
the number of different keywords slows down, thus the
increase rate of search time slows down as shown in Fig. 9. The
time overhead of search in VESFS [29] is still the largest due to
the use of the RSA accumulator.

Verification. VRFMS supports correctness verification and
completeness verification, however, most existing solutions
only support correctness verification. Therefore, this part
mainly compares VRFMS with other schemes through
experiments regarding the correctness verification. Since
the existing schemes do not support ranked search, it is
impossible to select top-k results for verification, so this part
only conducts comparative experiments by calculating the
time overhead required for the operations in the verification
phase. As shown in Fig. 10, with the increase of the number
of returned results, the time cost required to verify the cor-
rectness of results increases linearly. VRFMS only needs 25
milliseconds when verifying 200 returned results. In real
life, this overhead is completely acceptable.

The implement of completeness verification is that the
proxy server randomly selects � files to challenge the cloud
server. The cloud server calculates its relevance scores as
well as verification tags and then returns them to the proxy
server. The proxy server only needs to verify that the calcu-
lation of results is correct, and then verify the order of them
is correct. The time overhead at this stage is actually the
time required to verify � files. From Section 5.4.2, we know
that we have 99% probability to detect the malicious behav-
ior when � ¼ 10. As shown in Fig. 10, verifying the correct-
ness of 10 files requires less than 2 milliseconds, so the time
required to verify the completeness is also extremely low.

Search Accuracy. Search accuracy is measured by using the
precision of the results. LSH technology can only guarantee
the calculation results are equal with high probability, so
there may be a case where a certain file does not contain the
queried keyword but the file exists in the returned results,
that is, false positive fp. Then we denote the true positive as
tp. Therefore, the search accuracy in VRFMS is tp= tp þ fp

� �
.

A key factor that affects search accuracy is the number of
queried keywords. Fig. 11 shows the accuracy of the results
by varying the number of keywords in VRFMS and scheme
[18] in the exact keyword search and fuzzy keyword search.

It can be seen from Fig. 11 that whether it is an exact keyword
search or a fuzzy keyword search, as the number of key-
words increases, the search accuracy generally increases.
The more keywords, the easier we distinguish what we
want. Due to the use of the improved bi-gram keyword
transformation method, the accuracy of fuzzy keyword
search has reached almost 91% in VRFMS.

7 CONCLUSION AND FUTURE WORK

We proposed an efficient and verifiable ranked fuzzy multi-
keyword search scheme VRFMS in this paper. Based on the
existing fuzzy search scheme,we introduced the TF-IDF rule to
sort the returned results. We proposed a keyword transforma-
tion method based on bi-gram to further improve the accuracy
of fuzzy keyword search. We introduced the homomorphic
MAC technique to achieve correctness verification and pro-
posed a random challenge technology based on ranking to
achieve completeness verification. Formal security analysis
and empirical experiments demonstrate that VRFMS is secure
and efficient in practical applications.

However, the highest accuracy of fuzzy keyword search
in VRFMS is only 91%, and there is still much room for
improvement compared to exact keyword search. As part of
our future work, we will focus on further improving the
search accuracy.

REFERENCES

[1] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Secur. Privacy,
2000, pp. 44–55.

[2] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 1, pp. 222–233, Jan. 2014.

[3] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient con-
structions,” J. Comput. Secur., vol. 19, no. 5, pp. 895–934, 2011.

[4] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic
multi-keyword ranked search scheme over encrypted cloud data,”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 340–352,
Feb. 2016.

[5] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M.
Steiner, “Highly-scalable searchable symmetric encryption with
support for boolean queries,” in Proc. Annu. Cryptol. Conf., 2013,
pp. 353–373.

[6] Z. Fu, X. Wu, Q. Wang, and K. Ren, “Enabling central keyword-
based semantic extension search over encrypted outsourced
data,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 12, pp. 2986–
2997, Dec. 2017.

Fig. 10. Verification time of different schemes. Fig. 11. The accuracy of exact search and fuzzy search.

708 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

[7] F. Kerschbaum, “Frequency-hiding order-preserving encryption,”
in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., 2015,
pp. 656–667.

[8] D. S. Roche, D. Apon, S. G. Choi, and A. Yerukhimovich, “POPE:
Partial order preserving encoding,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2016, pp. 1131–1142.

[9] S. Lai et al., “Result pattern hiding searchable encryption for con-
junctive queries,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2018, pp. 745–762.

[10] Y. Miao, R. Deng, X. Liu, K.-K. R. Choo, H. Wu, and H. Li, “Multi-
authority attribute-based keyword search over encrypted cloud
data,” IEEE Trans. Dependable Secure Comput., vol. 18, no. 4,
pp. 1667–1680, Jul./Aug. 2021.

[11] Y. Miao et al., “Privacy-preserving attribute-based keyword search
in shared multi-owner setting,” IEEE Trans. Dependable Secure
Comput., vol. 18, no. 3, pp. 1080–1094, May/Jun. 2021.

[12] Y. Miao, R. Deng, K.-K. R. Choo, X. Liu, J. Ning, and H. Li,
“Optimized verifiable fine-grained keyword search in dynamic
multi-owner settings,” IEEE Trans. Dependable Secure Comput., vol.
18, no. 4, pp. 1804–1820, Jul./Aug. 2021.

[13] Q. Tong, Y. Miao, X. Liu, K.-K. R. Choo, R. Deng, and H. Li,
“VPSL: Verifiable privacy-preserving data search for cloud-
assisted Internet Of Things,” IEEE Trans. Cloud Comput., to be pub-
lished, doi: 10.1109/TCC.2020.3031209.

[14] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy key-
word search over encrypted data in cloud computing,” in Proc.
IEEE INFOCOM, 2010, pp. 1–5.

[15] M. Kuzu, M. S. Islam, and M. Kantarcioglu, “Efficient similarity
search over encrypted data,” in Proc. IEEE 28th Int. Conf. Data
Eng., 2012, pp. 1156–1167.

[16] B. Wang, S. Yu, W. Lou, and Y. T. Hou, “Privacy-preserving multi-
keyword fuzzy search over encrypted data in the cloud,” in Proc.
IEEE INFOCOM Conf. Comput. Commun., 2014, pp. 2112–2120.

[17] J. Wang, X. Yu, and M. Zhao, “Privacy-preserving ranked multi-
keyword fuzzy search on cloud encrypted data supporting range
query,” Arabian J. Sci. Eng., vol. 40, no. 8, pp. 2375–2388, 2015.

[18] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient
multi-keyword fuzzy search over encrypted outsourced data with
accuracy improvement,” IEEE Trans. Inf. Forensics Secur., vol. 11,
no. 12, pp. 2706–2716, Dec. 2016.

[19] H. Zhong, Z. Li, J. Cui, Y. Sun, and L. Liu, “Efficient dynamic
multi-keyword fuzzy search over encrypted cloud data,” J. Netw.
Comput. Appl., vol. 149, 2020, Art. no. 102469.

[20] W. Sun, X. Liu, W. Lou, Y. T. Hou, and H. Li, “Catch you if you lie
to me: Efficient verifiable conjunctive keyword search over large
dynamic encrypted cloud data,” in Proc. IEEE Conf. Comput. Com-
mun., 2015, pp. 2110–2118.

[21] Z. Wan and R. H. Deng, “VPSearch: Achieving verifiability for pri-
vacy-preserving multi-keyword search over encrypted cloud data,”
IEEE Trans. Dependable Secure Comput., vol. 15, no. 6, pp. 1083–1095,
Nov./Dec. 2016.

[22] J. Zhu, Q. Li, C. Wang, X. Yuan, Q. Wang, and K. Ren, “Enabling
generic, verifiable, and secure data search in cloud services,” IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 8, pp. 1721–1735, Aug. 2018.

[23] C. Xu, C. Zhang, and J. Xu, “vchain: Enabling verifiable boolean
range queries over blockchain databases,” in Proc. Int. Conf. Man-
age. Data, 2019, pp. 141–158.

[24] W. Yang and Y. Zhu, “A verifiable semantic searching scheme
by optimal matching over encrypted data in public cloud,”
IEEE Trans., Inf. Forensics Secur., vol. 16, pp. 100–115, Jun. 2020,
doi: 10.1109/TIFS.2020.3001728.

[25] Q. Tong et al., “VFIRM: Verifiable fine-grained encrypted image
retrieval in multi-ownermulti-user settings,” IEEE Trans. Serv. Com-
put., to be published, doi: 10.1109/TSC.2021.3083512.

[26] J. Wang et al., “Efficient verifiable fuzzy keyword search over
encrypted data in cloud computing,” Comput. Sci. Inf. Syst., vol.
10, no. 2, pp. 667–684, 2013.

[27] X. Zhu, Q. Liu, and G.Wang, “A novel verifiable and dynamic fuzzy
keyword search scheme over encrypted data in cloud computing,” in
Proc. IEEE Trustcom/BigDataSE/ISPA., 2016, pp. 845–851.

[28] X. Ge, J. Yu, C. Hu, H. Zhang, and R. Hao, “Enabling efficient veri-
fiable fuzzy keyword search over encrypted data in cloud
computing,” IEEE Access, vol. 6, pp. 45725–45739, 2018.

[29] R. Huang, Z. Li, and G. Wu, “A verifiable encryption scheme sup-
porting fuzzy search,” in Proc. Int. Conf. Secur. Privacy Anonymity
Comput. Commun. Storage., 2019, pp. 397–411.

[30] H. Zhang, S. Zhao, Z. Guo, Q. Wen, W. Li, and F. Gao, “Scalable
fuzzy keyword ranked search over encrypted data on hybrid
clouds,” IEEE Trans. Cloud Comput., to be published, doi: 10.1109/
TCC.2021.3092358.

[31] Q. Chai and G. Gong, “Verifiable symmetric searchable encryp-
tion for semi-honest-but-curious cloud servers,” in Proc. IEEE Int.
Conf. Commun., 2012, pp. 917–922.

[32] K. Kurosawa and Y. Ohtaki, “UC-secure searchable symmetric
encryption,” in Proc. Int. Conf. Financial Cryptogr. Data Secur., 2012,
pp. 285–298.

[33] X. Jiang, J. Yu, J. Yan, and R. Hao, “Enabling efficient and verifi-
able multi-keyword ranked search over encrypted cloud data,”
Inf. Sci., vol. 403, pp. 22–41, 2017.

[34] J. Li et al., “Verifiable semantic-aware ranked keyword search in
cloud-assisted edge computing,” IEEE Trans. Serv. Comput., to be
published, doi: 10.1109/TSC.2021.3098864.

[35] K. Kurosawa and Y. Ohtaki, “Uc-secure searchable symmetric
encryption,” in Proc. Int. Conf. Financial Cryptogr. Data Secur., 2012,
pp. 285–298.

[36] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching
an encrypted cloud meets blockchain: A decentralized, reliable
and fair realization,” in Proc. IEEE INFOCOM Conf. Comput. Com-
mun., 2018, pp. 792–800.

[37] P. Willett, “The porter stemming algorithm: Then and now,”
Program, vol. 40, no. 3, pp. 219–223, Jul. 2006.

[38] D. Catalano and D. Fiore, “Practical homomorphic message
authenticators for arithmetic circuits,” J. Cryptol., vol. 31, no. 1,
pp. 23–59, 2018.

Xinghua Li (Member, IEEE) received the ME and
PhD degrees in computer science from Xidian
University in 2004 and 2007, respectively. He is cur-
rently a professor with the School of Cyber Engi-
neering, Xidian University, China. His research
interests includewireless networks security, privacy
protection, cloud computing, and security protocol
formalmethodology.

Qiuyun Tong received the BS degree from the
Department of Information and Computing Sci-
ence, Shaanxi Normal University, Xi’an, China, in
2019. She is currently working toward the PhD
degree with the Department of Cyber Engineer-
ing, Xidian University, Xi’an, China. Her research
interests include information security and applied
cryptography.

Jinwei Zhao received the BE degree in information
security from the University of Electronic Science
and Technology of China in 2013. He is currently
working toward themaster’s degree in computer sci-
ence with Xidian University. His research interests
include data security and searchable encryption.

LI ETAL.: VRFMS: VERIFIABLE RANKED FUZZY MULTI-KEYWORD SEARCH OVER ENCRYPTED DATA 709

http://dx.doi.org/10.1109/TCC.2020.3031209
http://dx.doi.org/10.1109/TIFS.2020.3001728
http://dx.doi.org/10.1109/TSC.2021.3083512
http://dx.doi.org/10.1109/TCC.2021.3092358
http://dx.doi.org/10.1109/TCC.2021.3092358
http://dx.doi.org/10.1109/TSC.2021.3098864

Yinbin Miao received the BE degree from the
Department of Telecommunication Engineering,
Jilin University, Changchun, China, in 2011 and
the PhD degree from the Department of Telecom-
munication Engineering, Xidian University, Xi’an,
China, in 2016. From September 2018 to Sep-
tember 2019, he was a postdoctor with Nanyang
Technological University. He is currently a lecturer
with the Department of Cyber Engineering,
Xidian University, Xi’an, China.

Siqi Ma received the PhD degree in information
system from Singapore Management University
in 2018. She is currently a lecturer with the
School of Information Technology and Electrical
Engineering, the University of Queensland. Her
research interests include mobile security, web
security, and IoTsecurity.

Jian Weng received the PhD degree with Shang-
hai Jiao Tong University, Shanghai, China, in
2008. He is currently a professor and the execu-
tive dean of the College of Information Science
and Technology, Jinan University, Guangzhou.
His research interests include public key cryptog-
raphy, cloud security, and blockchain. He was the
PC co-chair or a PC member for more than 20
international conferences.

Jianfeng Ma (Member, IEEE) received the ME
and PhD degrees in computer software and com-
munications engineering from Xidian University in
1988 and 1995, respectively. He is currently a pro-
fessor and the PhD supervisor with the School of
Cyber Engineering, Xidian University, China. He is
also the director of the Shaanxi Key Laboratory of
Network and System Security. His research inter-
ests include information and network security,
coding theory, and cryptography.

Kim-Kwang Raymond Choo (Senior Member,
IEEE) received the PhD degree in information
security from the Queensland University of Tech-
nology, Brisbane, Australia, in 2006, and currently
holds the Cloud Technology endowed professor-
ship at the University of Texas at San Antonio, San
Antonio, Texas. He is the founding co-editor-in-
chief of the ACM Distributed Ledger Technologies:
Research & Practice, founding chair of the IEEE
TEMS Technical Committee on Blockchain and
Distributed Ledger Technologies, an ACM distin-

guished speaker and IEEE Computer Society distinguished visitor (2021-
2023), and a Web of Science’s highly cited researcher (Computer Sci-
ence-2021, Cross-Field-2020). He is also the recipient of the 2019 IEEE
Technical Committee on Scalable Computing Award for excellence in scal-
able computing (middle career researcher).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

710 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

