CVPR
#7865

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CVPR 2022 Submission #7865. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

DeepFake Disrupter: The Detector of DeepFake Is My Friend

Anonymous CVPR submission

Paper ID 7865

Abstract

In recent years, with the advances of generative mod-
els, many powerful face manipulation systems have been
developed based on Deep Neural Networks (DNNs), called
DeepFakes. If DeepFakes are not controlled timely and
properly, they would become a real threat to both celebri-
ties and ordinary people. Precautions such as adding per-
turbations to the source inputs will make DeepFake results
look distorted from the perspective of human eyes. How-
ever, previous method doesn’t explore whether the disrupted
images can still spoof DeepFake detectors. This is critical
for many applications where DeepFake detectors are used
to discriminate between DeepFake data and real data due
to the huge cost of examining a large amount of data man-
ually. We argue that the detectors do not share a similar
perspective as human eyes, which might still be spoofed by
the disrupted data. Besides, the existing disruption meth-
ods rely on iteration-based perturbation generation algo-
rithms, which is time-consuming. In this paper, we propose
a novel DeepFake disruption algorithm called “DeepFake
Disrupter”. By training a perturbation generator, we can
add the human-imperceptible perturbations to source im-
ages that need to be protected without any backpropaga-
tion update. The DeepFake results of these protected source
inputs would not only look unrealistic by the human eye
but also can be distinguished by DeepFake detectors eas-
ily. For example, experimental results show that by adding
our trained perturbations, fake images generated by Star-
GAN [3] can result in a 10 ~ 20% increase in FI-score
evaluated by various DeepFake detectors.

1. Introduction

Face Manipulation has raised significant concerns within
our digital society. It is a kind of technique that allows peo-
ple to modify the face’s identity, expression, and attributes
in a given image or video. With the development and im-
plementation of Deep Neural Networks (DNN), the recent
manipulation methods could produce verisimilar results that
might fool human eyes. These DNN based methods, called
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Figure 1. (a) shows that advanced DeepFake manipulation mod-
els can easily spoof human naked eye and DeepFake detector.
(b) shows that after DeepFake Disruption, fake outputs become
apparently distorted from the perspective of human eye, but can
still spoof the DeepFake detector. (c) shows that our proposed
method DeepFake disrupter can invalidate the DeepFake manipu-
lation process from both human end and machine end.

DeepFakes [1,2,9,22,23,26], have attracted much attention
from the public and researchers because the high-quality
DeepFake results could lead to social and security prob-
lems. For example, the public might think the victims did
somethings that they never did due to the presence of their
identities in the DeepFake videos, thus ruining their reputa-
tions. The forgery data could also fool the security protocol
by verifying the payment authorization system through fake
personal information so that putting the victims’ wealth at
great risk.

As a response to the increasing concern of DeepFake,
many defense methods are proposed. The first way is using
detection models to distinguish Real and DeepFake data.
Multiple detection algorithms are introduced, including us-
ing traditional DNN models for detection [5, 16, 19], analyz-
ing the inconsistent within the DeepFake data [10, 28], and
extracting the synthesis signal as the evidence for discrim-
ination [25]. On the other hand, recent research provides
a new direction for defense, preventing attackers from syn-
thesizing DeepFake images. These methods, called Deep-
Fake Disruption, attempt to add small perturbations to the
original images such that the corresponding DeepFake re-
sults might be heavily distorted in visualization. Disrupt-
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ing DeepFakes [20] is a related work on image translation
disruption framework to make image manipulation models
generates fake images with human-perceptible distortions.

Although the recent DeepFake Disruption methods could
prevent the DeepFake models from generating realistic re-
sults, these kinds of methods still have some problems. In
the real-world multi-media systems, it is extremely expen-
sive to employ human observers to defend the DeepFake
by manually examining every input image in the large vol-
ume of vision data, even though the defects in the image
produced by DeepFake are obvious. Instead, to automate
the defense of DeepFake, it is prevalent and preferable to
develop DeepFake detectors. However, although the ex-
isting disruption methods could make the DeepFake’s out-
put become distorted from the human eye, our experiment
demonstrates that these visually unnatural samples can still
spoof the DeepFake detectors since the human eye and neu-
ral network share a different decision logic. What’s more,
these recent disruption methods rely on iteration-based ad-
versarial attack algorithms, e.g. Iterative Fast Gradient
Sign Method(I-FGSM) [8] and Projected Gradient Descent
(PGD) [12], to find out the perturbation for each data, which
is normally time-consuming.

We argue that we also need to consider the loss of the
DeepFake detector, such that the generated DeepFake re-
sults of protected data are not only being recognized by the
human eye but also can be detected by the detectors, and
at the same time, the original data injected with perturba-
tions can still be recognized as the real one. We should
also use a perturbation generator to generate perturbation,
which provides an end-to-end protection algorithm that can
save time. Figure 1 shows the development of DeepFake
disruption methods.

In this work, we propose a novel framework, called
DeepFake Disrupter, to defend against DeepFake with the
help of the DeepFake detector. The DeepFake Disrupter is
a perturbation generator that takes as input real images and
outputs a human-imperceptible perturbation so as to make
the data generated by the DeepFake models be identified
as fake by DeepFake detector and human eyes; meanwhile,
the original real inputs injected with perturbations can still
be identified as real by DeepFake detector. We show that
just making DeepFake outputs distorted from the human
eye’s view is insufficient because the DeepFake detector
may still be fooled by classifying the fake videos as real.
Experimental results on CelebA [11] and VoxCelebl [14]
datasets demonstrate that the proposed DeepFake disrupter
can effectively protect original real images/videos from be-
ing used as a source for making DeepFake data.

2. Related Work

Adpversarial attack and Adversarial Training After real-
izing the vulnerability of normal neural networks, a plethora

of works have been done in the area of adversarial attacks.
The first work to notice about the adversarial attack would
be Fast Gradient Sign Method(FGSM) proposed by [4], in
which they suggest a one-step gradient ascent method to
generate the adversarial examples. Based on FGSM, [12]
propose Projected Gradient Descent(PGD) attacks. Instead
only updating once, the Projected Gradient Descent (PGD)
[12] method just iteratively update the adversarial examples
to make it stronger than FGSM. While the above methods
collectively use the iterative gradient update method for per-
turbation generation, there are also some works producing
perturbations via generative models. Generative Adversar-
ial Perturbation (GAP) [17] uses U-Net and Resnet as per-
turbation generators to produce both universal and image-
dependent perturbations that can help fool the classification
networks. However, all the above works focus on adver-
sarial attack and training on normal classification tasks and
researches about adversarial attacks on generative models
attract less attention. Works like [20] and [21] use the idea
of adversarial attack to disrupt the ability of DeepFakes gen-
erators, which are more close to our proposed method.

DeepFake Data Generation The DeepFake techniques can
be separated into two major categories, identity manipu-
lation and attribute manipulation. For identity manipula-
tion, RSGAN [15] extracts the embedding information of
the face and hair for generating results. FSGAN [7] imple-
ment multi-scale architecture to handle different pixel situ-
ations while using an occlusion-wise algorithm to preserve
the occlusion region of the target face. Li et al., [O] pro-
posed an identity-independent DeepFake method using two
network streams to extract identity and texture embedding
from the source and target face separately to achieve high
fidelity identity manipulation results. Facial expression and
attribute manipulation form another category of DeepFake.
Rather than changing the identity information, these tech-
niques try to change some facial attributes (such as hair and
skin color), or expressions (such as smiling or blinking).
StarGAN [3] is a famous work for attribute manipulation,
which encods the facial attributes into latent space. Fur-
thermore, the researcher extent the image expression ma-
nipulation into video level called facial animation. Given a
driving video and a source face image, the animation meth-
ods would generate a new video that the source image is
performing the same expression and action as the face in
the driving video. Thies et al. [24] consider facial reenact-
ment as a domain transfer problem using Pix2Pix architec-
ture [6] to produce such results. Siarohin et al. [22] extract
the motion information of driving videos with optimal flow
estimation to generate high-quality animation results.

DeepFake Detection and Defense As a response to the in-
creasing generation quality of DeepFake, many methods are
proposed to detect to defense DeepFake attacks. A common
way is to develop DNN detection modules. Rossler [19]
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and Selim' implement DNN to achieve promising detec-
tion accuracy. Others try to detect the inconsistency within
the generated data, such as detecting the identity swap-
ping boundary, the inconsistent angles between the face and
head, and the difference between face and background [13].
In addition, some researchers argue it contains synthesis
signals for the GAN-based DeepFake generation method.
Utilizing these signals could detect the forgery data easily.
For instance, Wang et al. [25] observe GAN signatures us-
ing Discrete Cosine Transform(DCT) for detecting GAN-
based DeepFake samples. Most of the proposed methods
focus on image/video-frame level detection, while some
video level detection methods are also introduced. [5] pro-
posed a method to leverage Recurrent Neural Networks for
extracting temporal differences. Wang et al. [27] use 3D-
CNN to utilize temporal information for detection.

3. Methodology

In this section, we will first provide the preliminaries on
Adversarial Attacks to DeepFake and then describe our pro-
posed pipeline and optimization algorithm.

3.1. Adversarial Attacks to DeepFake

As a new way for DeepFake defence, disrupting Deep-
Fake models is to add human-imperceptible perturbations
on the source images [21]. The disruption on the output
fake images can be taken as an adversarial attack to the
DeepFake model and will make the DeepFake models less
effective in generating realistic images. That is, the output
by DeepFake will be highly unrealistic from the perspec-
tive of human naked eyes. Formally, we denote x as the
source image, and 7 represents the adversarial input, i.e.,
Z = x + n, where 7 is the human-imperceptible perturba-
tion with a common norm constraint ||7||2 < €. Suppose
there is a DeepFake generator G(-). By taking the source
image x, and the perturbed image 7 as the input, the Deep-
Fake generator will produce G(x) and G(Z), respectively.
A successful DeepFake disruption 1 on x will make the hu-
man observers easily notice that the generated G(Z) is an
image after manipulations. By considering 7 as an attack-
ing target, the objective function can be written as

max Lp(G(xz +n),r), st
7

Inll2 <, ()

where Lp is a distance function normally using the L°, L?
or L* norms. If r is set to be the original DeepFake output,
which is 7 = G(z), we will get the ideal disruption that can
maximize the distortion of the output. Eq. (1) can be further
generalized to consider the conditional image generation,
i.e., G(z, ¢), where ¢ denotes the target class. Moreover, we

]https:
challenge

/ / github . com/ selimsef / dfdc_deepfake _

can also choose '¢qrget to be a specific predefined image as
the attacking target.

The optimal perturbation 7 for the source image x in Eq.
(1) can be effectively optimized with those methods devel-
oped for generating adversarial examples, e.g., [terative Fast
Gradient Sign Method (IFGSM) [4] or Projected Gradient
Descent (PGD) [12]. Though the optimal 7 can be effec-
tively solved through the iterations of IFGSM or PGD, it
could be time-consuming to deal with the large-scale image
dataset. For each source image x, we have to run a sep-
arate optimization procedure to discover its corresponding
optimal perturbation 7. Most importantly, source images in
the same dataset often have shared low-level or high-level
patterns. The separate optimization of the perturbation for
these images thus cannot well exploit the useful structure
information in the dataset.

In the real-world multi-media systems, it is extremely
expensive to employ human observers to defend the Deep-
Fake by manually examining every input image in the large
volume of vision data, even though the defects in the image
produced by DeepFake are obvious. Instead, to automate
the defense of DeepFake, it is prevalent to develop Deep-
Fake detectors. Both DeepFake detectors and disrupting
DeepFake are to defend DeepFake but from two different
perspectives. The remaining question is whether the human
perceptible images produced by disrupting DeepFake will
indeed benefit the future DeepFake detection, rather than
doing a disservice.

3.2. DeepFake Disrupter

The model pipeline of our proposed method consists of
Perturbation Generator, DeepFake Generator, and Deep-
Fake Detector. Next, we will introduce them one by one
followed by an overall optimization framework.

Instead of independently treating the perturbations on the
source images, we tend to learn a disrupter to generate the
perturbation P(x) for the image x. Hence, given a Deep-
Fake generator GG, the generated images for the source im-
age x and perturbed image =+ P(z) can be written as G(x)
and G(z + P(x)), respectively. The objective function of
disrupting DeepFake can thus be rewritten as

E.[Lp(G(z+P(x)),r)], st |[P)|2<e Va,

)
where we have calculated distance loss function over all im-
ages in the training set. As the inequality constraint in Eq.
(2) cannot be conveniently handled in the end-to-end train-
ing of the networks, we further have a soft constrained ver-
sion of the objective function,

max  Eq[Lp(G(2+P(x)),r)]~CiEs [(|1P(2)]l2=€)+],
(3)

where ()4 denotes the hinge loss, € is a small constant to
constrain || P(x)||2, and C is a hyper parameter to balance

max
P
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Figure 2. Overview of DeepFake disrupter. A source video or image will firstly feed into the perturbation generator to produce a human-
imperceptible perturbation. The perturbation will be added back to the source inputs. After that, we pass the adversarial inputs into the
DeepFake Generator together with a target condition to get a fake image or fake video. Lastly, the fake outputs and the adversarial inputs

will be fed into the downstream DeepFake discriminator model.

the two items. We will have a non-zero loss for the sec-
ond item when ||P(x)||2 > €, which encourages that the
generated perturbation will not be too severe on the source
image.

Along with the development of advanced DeepFake ma-
nipulation methods, there also emerge a few effective Deep-
Fake detection techniques. These DeepFake detection tech-
niques are essential to screen the DeepFake data for the
multimedia systems, while the aforementioned disrupting
DeepFake is an preventive measure to protect the data from
the DeepFake. But a safe DeepFake disrupter should take
the downstream DeepFake detector into consideration. As
the proposed work is not focusing on developing a new
DeepFake detector, we directly adopt a well-trained Deep-
Fake detector D as an auxiliary for the DeepFake disrupter.
The detector actually considers a binary classification task,

D(z) = {(1)’

where D denotes the DeepFake detector model, x is the in-
put data to be examined by the detector. If the values of
model output logits is over 0.5, we classify the input to be
real; otherwise, we classify the input as fake.

The DeepFake detector D can well recognize that the
clean source image x is real. A DeepFake generator G
might generate the image G(x) that deceives the DeepFake
detector D. But with the DeepFake disrupter P, we expect
the generated fake image G(z+ P(z)) could be well identi-
fied by D. That is, we aim to minimize the predicted logits
for the fake data G(z + P(x)),

if xisreal

if xis fake’ @

Liake = Ez[D(G(z + P(x)))], ()

where L 4. is thus denoted as the DeepFake detection loss
for the fake data.

It is instructive to note that the aim of disrupting Deep-
Fake is to protect the data from DeepFake, rather than hurt-
ing the quality of the data. We have already constrained that
the perturbation P(z) will not be too large by penalizing its
norm. Here from the lens of the DeepFake detection, we in-
troduce another quality measure of the perturbed data. If the
perturbed data « + P(x) can still be recognized as real by
the DeepFake detector D, we think its quality can be guar-
anteed to some extend. Formally, we obtain the detection
loss for the perturbed data x + P(x),

Lrear = E[1 — D(z + P(2))]. ©6)

By incorporating Eq. (3) and the above loss functions,
we thus achieve the resulting objective function,

L =—E;[Lp(G(z + P(x)),r)] + C1Es [(|[P(@)ll2 — €)+]

+ O3B, [D(G(z + P(2)))] + C3E.[1 — D(x + P(x))],

)

where C7, Cs and C3 are hyper parameters to balance
different loss items. The DeepFake Generator and Deep-
Fake Detector will be pretrianed or selected from pretrained
SOTA models and during training their parameters will be
freezed, which means only the parameter of our proposed
Perturbation Generator will be updated. The setting of
of the hyper parameters and other training details like the
structure of perturbation generators will be discussed in Ap-
pendix. By optimizing Eq. (7), an effective disrupter can be
learned from the training dataset. At the inference stage, we
can feed new images into the disrupter P and conduct effi-
cient feed-forward processes to generate their correspond-
ing optimal perturbation. The generated perturbation can
increase the difficulty of the DeepFake methods in generat-
ing effective fake images to deceive humans’ eyes and the
downstream DeepFake detectors.
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Generalization over D. In the real world, the DeepFake
Disrupter P and D are in the same camp to defend the attack
by DeepFake Generator G. Both P and D are thus proba-
bly trained and maintained by the same developer. That is
to say, when we are training disrupter P, we could have al-
ready known and got the access to the detector D that is to
be used online. This thus naturally addresses the concern
on the generalization over D. Nevertheless, we also evalu-
ate the generalization over different Ds’ in our experiments,
e.g., training with an Xception-based D while testing on a
Resnet-based D. Although the overall detection accuracy
will drop, an image with the optimized perturbation tend to
be more easily identified than the clean one without protec-
tion.

Generalization over G. The generalization over Deep-
Fake Generator G manifests in two aspects. First, well-
trained perturbation P generalizes well across different
DeepFake Generators G evaluated by the percentage of suc-
cessfully disrupted images. e.g. trained by using GANi-
mation and tested by using StarGAN. This is because most
DeepFake Generators are adversarially vulnerable to per-
turbations. A tiny change to the input could easily distort
the output. Second, many DeepFake Generators are con-
trolled by different conditions to generate specific fake im-
ages. The well-trained perturbation shows a good gener-
alization property across different conditions. e.g. trained
under blackhair condition and tested under brownhair con-
dition in StarGAN. The detection accuracy for these cross-
condition evaluations is higher than the clean image without
protection.

4. Experiment

This section illustrates the experimental results to
demonstrate the effectiveness of DeepFake Disrupter using
our proposed optimizing framework. We will firstly de-
scribe the datasets we used in our experiments. Then we
will briefly discuss the baseline and evaluation metrics we
used. Lastly, we will discuss our experimental results in
detail.

4.1. Datasets

We mainly use two datasets in our experiments: CelebA
[11] and VoxCelebl [14]. The Large-scale CelebFaces At-
tributes Dataset (CelebA) has more than 200k celebrity im-
ages. In addition, this dataset covers large pose variations
and background clutter with 10,177 identities, 202,599 face
images, and 5 landmark locations, 40 binary attributes an-
notations per image. The VoxCelebl dataset contains more
than 100,000 videos extracted from Youtube, which are ut-
terances of more than 1,000 celebrities. For the preprocess-
ing of these videos, we follow the guideline and implemen-
tation details of [22] to crop the video frames according to
annotated bounding boxes because the cropping process can

provide better alignment for DeepFake generator to produce
good quality fake videos. After that, we recorded five differ-
ent motion videos as the driving videos that serve as an in-
put of the DeepFake Generator, namely mouth, blink, yaw,
nod, smile. Then, we follow the official implementation
of [22], for each video, we extract the best frame and to-
gether with a random driving video as the input pairs for
the selected DeepFake Generator.

4.2. Baseline and Evaluation Metrics

We use Disrupting DeepFakes proposed by [20] as our
baseline. This work disrupts the DeepFake generation pro-
cess by making the DeepFake Generator produce distorted
images using the loss function same with Eq. 1, which
is trying to make the DeepFake results visually unnatural.
It is different from our method which is disrupting Deep-
Fake generation by significantly reducing its passing rate
on DeepFake detectors. We will empirically demonstrate
that just making the DeepFake generator produce fake im-
ages with human-perceptible distortions doesn’t necessarily
guarantee that the fake videos will be recognized by Deep-
Fake Detectors. To be specific, we will use Precision, Re-
call and F1 score to quantify the disrupting performance
for both the baseline method and our proposed method. For
evaluation on the successful disruptions by human eye, we
follow [20] to set per-pixel errors Lo > 0.05 as our criteria.
If the fake outputs of our method and the original fake out-
puts have Lo > 0.05, we consider it a successful disruption
visually.

4.3. Results

Disruption Performance for specific target domains In
this section, we use StarGAN to demonstrate that our pro-
posed method can work on any specific target domains i.e.
Black Hair, Blond Hair, Brown Hair, Male, Young. Here,
target domain refers to ¢ in conditional image translation
model G(z,c¢). The comparison comes from three parts.
The first part is original fake images produced under [3], the
second part is disrupted fake images generated under [20],
the third part is fake images generated under our proposed
framework. Specifically, we choose 100 real images to
generate 100 fake images according to the aforementioned
three-generation processes to conduct the comparison. That
is to say, we calculate the precision, recall, and F1 score
using the 100 real images plus 100 fake images for compar-
ison, in which the higher the precision, recall, and F1 score,
the better the algorithm. Because all detectors are well pre-
trained and thus have high accuracy on predicting real im-
ages, the case of false negative is rare, resulting in high re-
call in all cases. Therefore, in the following experiments,
we mainly focus on analyzing the performance change on
precision and F1-score. Table 1 shows the detailed compar-
isons under different target settings. Notice that we choose
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. Xception Resnet18 Resnet50
Attributes Type
precision recall Fl-score precision recall Fl-score precision recall Fl-score

StarGAN-fake [3] 0.51 0.99 0.68 0.39 0.60 0.47 0.43 0.75 0.55

Blackhair disrupted-fake [20] 0.53 0.99 0.69 0.50 0.60 0.55 0.46 0.75 0.57

DeepFake disrupter(ours) 0.90 0.99 0.94 1.00 0.60 0.75 0.94 0.75 0.83

StarGAN-fake [3] 0.51 0.99 0.67 0.38 0.60 0.46 0.43 0.75 0.55

Blondhair disrupted-fake [20] 0.55 0.99 0.71 0.52 0.60 0.56 0.56 0.75 0.64

DeepFake disrupter(ours) 0.98 0.99 0.99 1.00 0.60 0.75 0.99 0.75 0.85

StarGAN-fake [3] 0.51 0.99 0.68 0.38 0.60 0.47 0.43 0.75 0.55

Brownhair disrupted-fake [20] 0.56 0.99 0.71 0.49 0.60 0.54 0.46 0.75 0.57

DeepFake disrupter(ours) 0.96 0.99 0.98 0.75 0.60 0.67 0.54 0.75 0.63

StarGAN-fake [3] 0.51 0.99 0.68 0.39 0.60 0.47 0.43 0.75 0.55

male disrupted-fake [20] 0.54 0.99 0.70 0.42 0.60 0.49 0.51 0.75 0.61

DeepFake disrupter(ours) 0.97 0.99 0.98 1.00 0.60 0.75 0.98 0.75 0.85

StarGAN-fake [3] 0.51 0.99 0.67 0.38 0.60 0.47 0.43 0.75 0.54

disrupted-fake [20] 0.53 0.99 0.69 0.48 0.60 0.53 0.51 0.75 0.61

YOURE  DeepFake disrupter(ours) 090 099 095 1.00 060 075 083 075  0.79

Table 1. Disruption Performance for StarGAN with 5 different target conditions. Higher figure implies better performance

DeepFake Detector Xception Resnet18 Resnet50
precision recall Fl-score precision recall Fl-score precision recall Fl-score

StarGAN [3] 0.58 0.99 0.72 0.53 0.60 0.56 0.56 0.75 0.64
Disrupring StarGAN [20] 0.64 0.99 0.78 0.59 0.60 0.60 0.59 0.75 0.66
DeepFake disrupter (ours) 0.86 0.99 0.92 0.87 0.60 0.71 0.72 0.75 0.74
GANimation [18] 0.60 0.97 0.74 0.47 0.65 0.55 0.53 0.78 0.63
Disrupting GANimation [20] 0.70 0.97 0.82 0.56 0.65 0.60 0.67 0.78 0.72
DeepFake disrupter (ours) 0.82 0.97 0.89 0.89 0.65 0.75 0.98 0.78 0.87

First-Order-Motion [22] 0.56 0.72 0.63 0.50 0.68 0.58 - - -

DeepFake disrupter (ours) 091 0.72 0.80 0.89 0.68 0.78 - - -

Table 2. Disruption Performance under different DeepFake Manipulation Models and DeepFake Detection Models

the same set of real images for a fair comparison, therefore,
the recall score will only change based on different detec-
tion models. In most cases, baseline method [20] can only
archive 2 — 10% performance gain with regarding to preci-
sion and F1 score, while our method can boost the perfor-
mance to more than 90%.

Disruption Performance for class transferable attacks
The DeepFake architectures used in our framework all have
conditional targets as their inputs. StarGAN has facial at-
tribute encodings; GANimation has action units for differ-
ent expressions and the First-Order Motion model has dif-
ferent kinds of driving videos. It is beneficial to train a
perturbation generator that can work under arbitrary target
conditions. The training strategy is simple, we choose con-
ditional targets randomly during each training iteration, i.e.,
at each iteration, we choose random action unit index from
the range between O to 80 when training our Perturbation
generator under the GANimation setting. The trained per-
turbation generator would be enabled to produce perturba-
tions that can satisfy our problem constraints. We tested the
performance of the aforementioned three DeepFake manip-
ulation algorithms using the pretrained DeepFake detection
models via precision, recall and, F1 score. For First Order
Motion Model [22], we didn’t use Resnet50 for detection
testing due to VRAM budget limitation. As there is no pre-

vious work for disrupting the outcomes of the First-Order-
Motion model, we directly use its original fake videos as
our baseline. Table 2 shows the detailed comparisons, and
from the table, we can see that our proposed framework not
only works on image transformation algorithms like Star-
GAN [3] and GANimation [ 18] but also works on face im-
age animation algorithms First-Order-Motion Model [22],
and they all show superior performance compared with sim-
ply maximizing output norm distances in baseline method.

Multi-Attentional [30]

DeepFake Detector
precision recall Fl-score

StarGAN [3] 0.53 0.98 0.69
Disrupring StarGAN [20] 0.67 0.98 0.77
DeepFake disrupter (ours) 0.88 0.98 0.93
GANimation [18] 0.62 0.96 0.75
Disrupting GANimation [20] 0.73 0.96 0.84
DeepFake disrupter (ours) 0.85 0.96 0.91

Table 3. Disruption Performance Against Multi-Attentional Deep-
fake Detection models

Disruption Performance with SOTA DeepFake Detec-
tion Algorithms We use basic backbones like Xception and
Resnet in the above experiments simply because we aim to
prove the effectiveness of our trained perturbation genera-
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tor. However, we also tested our proposed pipeline against
state-of-the-art DeepFake detection algorithms called multi-
attentional DeepFake Detection [30]. In their work, they
utilize multi attentional maps and textural feature enhance-
ment to boost the detection performance and we will use
their pretrained models as our DeepFake detector in our
proposed pipeline. From Table 3 we can see our proposed
pipeline can achieve similar performance gain in terms of
precision and Fl-score compared with those using Xcep-
tion and Resnet, which further proves the efficacy of our
proposed pipeline.

Detection Outcomes for Real Inputs, Perturbed Inputs
and Fake Inputs We compare the detection outcomes of
real inputs, perturbed real inputs, and fake inputs using our
proposed method because one goal of our proposed frame-
work is ensuring the perturbed real inputs to be detected
as real by the DeepFake detectors. To be specific, we add
perturbations generated by the proposed method to 100 test-
ing real images to get 100 perturbed real images for testing
under pretrained Xception and Resnet18 detector. Table 4
shows the success rate, i.e., the proportion of images that
can be detected as real by the detectors. For real inputs x
and perturbed real inputs « + P(x), the higher the success
rate the better, for fake inputs G[x + P(x)] the lower the
success rate the better. From the table, we can see that the
real inputs and perturbed input can all maintain a high suc-
cess rate while the fake inputs successfully achieve a lower
success rate.

Face Manipulation  Inputs Type  Xception Resnetl8
x 0.99 0.98
StarGAN z+ P(x) 0.98 0.96
Glz + P(z)) 0.10 0.07
x 0.99 0.97
GANimation x + P(z) 0.98 0.96
Gz + P(z)] 0.03 0.09
x 0.99 0.97
First-Order-Motion ~ x + P(z) 0.98 0.96
Gz + P(z)] 0.13 0.16

Table 4. Detection outcomes for comparison among real inputs,
perturbed inputs and fake inputs.

Generalization This section explores the generalization
ability of the trained perturbation generator from two as-
pects: detector and manipulation generator. We test the
disruption performance by using a detector that is differ-
ent from that in the training. F1 scores are reported in Table
5, where the generator is GANimation. The manipulations
G(z) over clean images can be only detected by Resnet18
with a 0.55 F1. By incorporating the downstream Resnet18
detector into the proposed algorithm, the F1 by Resnet18
can achieve 0.75, and other unknown detectors like Xcep-
tion and Resnet50 can also enjoy higher F1 scores than 0.55,
which demonstrates the generalization with respect to the

detector.
Detectors Xception Resnetl8 Resnet50 G(x)
Xception 0.89 0.77 0.68 0.74
Resnet18 0.61 0.75 0.64 0.55
Resnet50 0.74 0.79 0.87 0.63

Table 5. Generalization w.r.t. different detectors

We proceed to evaluate the generalization w.r.t. different
manipulations. StarGAN is used in training, while GAN-
imation is used in tests, and vice versa. The distortion of
DeepFake outcomes is reported in Table 6. Lo norm is
calculated between manipulation of the clean image and
that of the clean image with our perturbations, i.e., G(x)
and G(x+P(x)). Following [20], %dis shows percentage
of successful disruptions of 500 fake images produced by
G(x+P(x)), ie. when L2 is over 0.05, the image is success-
fully disrupted. Conducting both training and test with Star-
GAN leads to a 100% success. Though the test on a differ-
ent GANimation has a performance drop, the success rate of
74% 1is still high enough. When training with GANimation,
we find that StarGAN is more vulnerable, as its success rate
achieves 100%.

Face Manipulation StarGAN . GANimatiop
L2 %dis L2 Yodis

StarGAN 0.326 100% 0.183 74%
GANimation 0.987 100% 0.073 82%

Table 6. L2 Norm and Percentage of Disruption trained and tested
with different generators.

StarGAN depends on the manipulation conditions. The
condition set in the training could be different from that in
the testing. We evaluate the generalization results of differ-
ent conditions in Table 7. The results are F1-scores tested
by Xception Detector. Baseline is detection results of G(x)
over clean images. By considering the condition Blackhair,
the detector can achieve a 0.68 F1 over the fake results of
clean images, while the proposed algorithm can protect the
data and the detector’s performance is boosted to the 0.94
F1. Though changing a different condition (Blondhair or
Brownhair) in the test leads to a performance drop, the re-
sulting detection performance is still higher than that with-
out protection (i.e., 0.68). This thus suggests the general-
ization of the manipulation generator.

Conditions Blackhair Blondhair Brownhair G(x)
Blackhair 0.94 0.79 0.81 0.68
Blondhair 0.73 0.99 0.70 0.67
Brownhair 0.69 0.74 0.98 0.68

Table 7. Generalization to different conditions in StarGAN re-
ported by Fl-score

DeepFake Visualization In this section, we will show that
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Figure 3. Comparison between the result of our framework and
baseline methods.

the DeepFake outputs have a high probability of being dis-
torted from the perspective of the human eye. Figure 3
shows the visualization comparison of our method with the
baseline method on StarGAN and GANimation. We can see
that the patterns of disrupted outcome vary across different
attacking methods and DeepFake manipulation models, but
they all show noticeable distortions compared with the fake
images without disruption. Figure 4 shows visualizations on
video frames under [22]. The first row is the original video
frames. The second row is fake videos produced by using
original videos as a source. The third row is original videos
adding perturbations generated by our trained perturbation
generator. The last row is the fake videos produced by per-
turbed frames. We can see that the disrupted fake video
frames in the last row all have significant noises or distor-
tions. Apart from qualitatively visualizing the DeepFake
outcomes, we also evaluate the proportions of disrupted out-
comes quantitatively. We follow [29] to set Ly > 0.05 as
the criteria for successful disruption as there are noticeable
distortions when Ly > 0.05. Table 8 shows the per-pixel
L, for generated perturbations 7 and the difference between
disrupted fake images and original fake images as well as
the percentage of successful disruptions under different at-
tack methods.

Algorithm Type StarGAN GANimation First-Order-Motion
Loy 1.324 0.120 0.240
I-FGSM %dis  100% 89% 92%
PGD OLZ, 1.532 0.064 0.280
Todis 100% 79% 100%
Ly 0.326 0.073 0.320

disrupter (Ours) o, 7. 100% 82% 91%

Table 8. Comparison of Lz pixel-wise errors and the percentage of
disrupted images(%dis.) for baseline disruption methods and our
method.

Inference Efficiency We also compare the inference effi-
ciency between the baseline method [20] and our proposed
Disrupter. Specifically, we choose 100 testing images to run
the inference using the PGD method and Our Disrupter and
calculate the average time of generating perturbation for a

G(x)

Figure 4. Examples of visualizations on First Order Motion Model
with and without perturbations.

single input image measured by seconds. Table 9 shows
that our proposed method disrupter runs 8-10 times faster
compared with the traditional iteration-based attack method
PGD.

Attack Method | PGD  Disrupter (ours)
StarGAN 0.551 0.062
GANimation | 0.628 0.057

Table 9. Inference Efficiency measured by seconds per image

5. Conclusion

We propose an effective pipeline called DeepFake Dis-
rupter based on generative networks to train perturbation
generators that can help protect the source images or videos
from being manipulated by various DeepFake manipulation
algorithms. By adding adversarial perturbations, the Deep-
Fake models would output fake images or videos to be suc-
cessfully detected as fake by the DeepFake detector. Mean-
while, the adversarial images would still be detected as real
by the DeepFake detector. The objective is achieved by ad-
versarial loss and hinge loss, the former one controls the
detection accuracy, while the latter controls the magnitude
of the perturbations. Experiments show that (a) the baseline
method [20] can only ensure the effectiveness of disruption
by the naked eye, but failed to guarantee that the disrupted
outputs can be effectively detected as fake by DeepFake de-
tectors. (b). The proposed method can significantly im-
prove the detection outcomes measured by precision, recall,
and F1 score compared with the baseline method, and this
performance is class transferable when training with ran-
dom class attributes. (c) The proposed method also provides
an extra benefit, which is maintaining the unnatural-looking
property of the fake outcomes. That is to say, our proposed
pipeline can destroy the ability of DeepFake manipulation
models both visually by the human eye and logically by
DeepFake detectors.
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