
Boosting Privately: Federated Extreme Gradient
Boosting for Mobile Crowdsensing

Yang Liu1, Zhuo Ma*1, Ximeng Liu*2, Siqi Ma3, Surya Nepal3, Robert.H Deng4, Kui Ren5
1 Xidian University, 2 Fuzhou University, 3 Data 61, CSIRO, 4 Singapore Management University, 5 Zhejiang University

bcds2018@foxmail.com, mazhuo@mail.xidian.edu.cn, snbnix@gmail.com,

siqi.ma@csiro.au, surya.nepal@csiro.au, robertdeng@smu.edu.sg, kuiren@zju.edu.cn

* Corresponding Author

Abstract—Recently, Google and other 24 institutions proposed
a series of open challenges towards federated learning (FL),
which include application expansion and homomorphic encryp-
tion (HE). The former aims to expand the applicable machine
learning models of FL. The latter focuses on who holds the secret
key when applying HE to FL. For the naive HE scheme, the server
is set to master the secret key. Such a setting causes a serious
problem that if the server does not conduct aggregation before
decryption, a chance is left for the server to access the user’s
update. Inspired by the two challenges, we propose FEDXGB, a
federated extreme gradient boosting (XGBoost) scheme support-
ing forced aggregation. FEDXGB mainly achieves the following
two breakthroughs. First, FEDXGB involves a new HE based
secure aggregation scheme for FL. By combining the advantages
of secret sharing and homomorphic encryption, the algorithm
can solve the second challenge mentioned above, and is robust to
the user dropout. Then, FEDXGB extends FL to a new machine
learning model by applying the secure aggregation scheme to the
classification and regression tree building of XGBoost. Moreover,
we conduct a comprehensive theoretical analysis and extensive
experiments to evaluate the security, effectiveness, and efficiency
of FEDXGB. The results indicate that FEDXGB achieves less
than 1% accuracy loss compared with the original XGBoost,
and can provide about 23.9% runtime and 33.3% communication
reduction for HE based model update aggregation of FL.

Index Terms—Privacy-Preserving, Federated Learning, Ex-
treme Gradient Boosting, Mobile Crowdsensing

I. INTRODUCTION

Extreme gradient boosting (XGBoost) is a state-of-the-art

machine learning model that performs well in processing both

classification and regression tasks. Winning 17 out of 29

challenges published by the world-famous Kaggle competition

validates that XGBoost is sure to have an impressive prospect

for the further development of artificial intelligence [1]. Sim-

ilar to other machine learning models, the performance of

XGBoost depends on how well the training dataset performs.

However, creating a large dataset requires lots of human

efforts, which is an unaffordable cost for most companies.

Hence, mobile crowdsensing is designed to collect data from

mobile users who are willing to share data. DroidNet [2] is

a sample system to demonstrate how mobile crowdsensing is

used in machine learning model training. However, the past

crowdsensing architecture usually allows the central server to

access to the plaintext user’s data, which leaves a chance for

user privacy leakage. The incident of Facebook-Cambridge

Analytica happened in 2018, is a significant example to

demonstrate the consequences of such privacy leakage. The

large IT company secretly harvested millions of private user

data and use them to control a country’s leadership elec-

tion [3].

To address the privacy leakage problem for mobile crowd-

sensing, federated learning is proposed by Google and rapidly

attract exploded interests of researchers [4]. Federated learning

groups mobile users and the central server into a loose fed-

eration, and then, proceeds model training without uploading

private user data to the central server. Despite its excellent

features on security and performance, federated learning is

still a developing technique. In 2019, Google, in conjunction

with 24 other agencies, proposes a series of open challenges

for the future development of federated learning [5]. Besides

expanding the applicable machine learning model for federated

learning, Google points out that homomorphic encryption (HE)

can be a powerful tool in federated learning. However, existing

HE based FL schemes [6]–[8] still have the following two

unresolved challenges.

• Forced Aggregation. The native applications of HE to

federated learning is that the server encrypts the param-

eters with its own public key and sends them to the

user [6], [7]. Utilizing the homomorphism of HE, the

user can compute the model update without decryption

and return the encrypted model update to the server for

aggregation. A key challenge here is to force aggregation

on the server before decryption, as otherwise, the server

may be able to learn a user’s model update.

• User Dropout. Federated learning is originally designed

to run in the open network, in which the user’s connec-

tivity is always unstable. To date, most of the existing

HE based federated learning schemes cannot resolve the

accident user dropout problem, other than abandoning

the current round of training [6]–[8]. Such a drawback

dramatically reduces the practicality of the schemes in

applications.

To resolve the above challenges, we propose FEDXGB,

a federated extreme gradient boosting framework for mobile

crowdsensing that supports forced aggregation, and is robust

against user dropout. FEDXGB is composed of two kinds of

entities, a central cloud server and a set of users. FEDXGB

proceeds as follows. The central server iteratively invokes a

1

2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDCS47774.2020.00017

20
20

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
Sy

st
em

s (
IC

D
C

S)
 |

97
8-

1-
72

81
-7

00
2-

2/
20

/$
31

.0
0

©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
C

S4
77

74
.2

02
0.

00
01

7

Authorized licensed use limited to: University of Queensland. Downloaded on March 07,2022 at 01:02:15 UTC from IEEE Xplore. Restrictions apply.

suite of secure protocols to build the classification and regres-

sion tree (CART) of XGBoost. In the protocols, our newly

designed secure aggregation protocol is invoked to aggregate

the users’ gradients. By combining Bresson’s cryptosystem [9]

and Shamir’s secret sharing [10], FEDXGB makes the central

server to operate a forced aggregation on the gradients and

can recover the data of the dropout users.

Our contributions can be summarised as follows:

• Federated Extreme Gradient Boosting. We propose

a federated learning framework to implement privacy-

preserving XGBoost training for mobile crowdsensing,

called FEDXGB. Using a suite of secure protocols,

FEDXGB allows multiple users to cooperatively train an

XGBoost model without direct revealing of their private

data to the central server.

• Forced Aggregation. We design a new secure gradient

aggregation algorithm for federated learning, which com-

bines the advantages of both homomorphic encryption

and secret sharing. Specifically, through the combination

of homomorphic encryption and secret sharing, FEDXGB

ensures that the central server cannot get a correct decryp-

tion result before operating aggregation, and meanwhile,

is robust against user dropout.

• Practicality for Applications. We evaluate the effec-

tiveness and efficiency of FEDXGB using two standard

datasets. The results indicate that FEDXGB maintains

the high performance of XGBoost with less than 1% of

accuracy loss and attains about 23.9% runtime and 33.3%

communication reduction for gradient aggregation.

Outline. The rest of this paper is organized as follows. In

Section II, some background knowledge are briefly introduced.

Section III gives an overview of FEDXGB. Section IV presents

the technical intuition of our secure aggregation scheme.

Section V lists the implementation details of FEDXGB. The

security and performance of FEDXGB are discussed and eval-

uated in Section VI and Section VII. Section VIII discusses

the related work. The last section concludes the paper.

II. PRELIMINARY

In this section, we briefly introduce the background knowl-

edge about XGBoost and the cryptographic functions used in

FEDXGB. Table I summarizes the frequently-used notations.

TABLE I
NOTATION TABLE

Notation Description

wi the first-order derivative of l(·) for the ith instance.

hi the second-order derivative of l(·) for the ith instance.

ζu,v the secret share distributed to the user u by the user v.

F a finite field F, e.g. Fp = Z∗p for some large prime p.

G a cyclic group with a generator g.

〈·〉u key used for secure aggregation.

[[x]] an encrypted secret x.

A. Extreme Gradient Boosting

One of the goals of FEDXGB is to extend federated learning

to the ensemble learning model XGBoost. An XGBoost model

is composed of multiple classification and regression trees

(CARTs) that are built based on the boosting method [1]. For

the k-th iteration, the objective of XGBoost is to generate a

CART to minimize the following objective function Lk.

Lk =

n∑
i=1

l(yi, ŷk−1,i + fk(xi)) + Ω(fk), (1)

where n is the total number of training samples, i is the index

of each sample, and yi is the label of the i-th sample, ŷk−1,i

represents the predicted label of the i-th sample at the (k −
1)-th iteration, Ω is a regularization item. To grow a CART,

XGBoost iteratively adds branches (i.e., splitting the leaf node)

to the current tree. Assume IL and IR are the instance sets of

left and right nodes after a split, and I = IL ∪ IR. The score

to evaluate a split is as follows.

score =
1

2
·(

(
∑

i∈IL wi)
2∑

i∈IL hi + λ
+

∑
i∈IR w2

i∑
i∈IR hi + λ

− (
∑

i∈I wi)
2∑

i∈I hi + λ
),

(2)

where λ is a constant value, wi and hi are the first-order and

second-order derivatives of l(·). Each time a branch is added,

XGBoost chooses the split with the maximum score from all

candidate splits. When a CART structure is fixed, the weight

ωj of a leaf node j is calculated by Eq. 3.

ωj = −
(
∑

i∈I wi)
2∑

i∈I hi + λ
. (3)

B. Homomorphic Encryption

Bresson’s cryptosystem [9] is a kind of partially homo-

morphic cryptosystem derived from Paillier’s cryptosystem.

FEDXGB adopts it to protect the gradient of users. The

followings are some definitions of the cryptosystem.

Key Generation. Three inputs are required for the key

generation function Key.Gen, namely a security parameter

�, a big integer N = q1q2 and a generator g. q1 and q2 are

two primes that satisfy q1 = 2q′1 + 1 and q2 = 2q′2 + 1,

where q′1 and q′2 are primes and different from q1 and q2.

g ∈ Z
∗
N2

is a generator of the group (G, q1, q2, N = q1q2, g)
with order ord(G) = (p − 1)(q − 1)/2. With the inputs,

Key.Gen outputs a private-public key pair (〈kpri〉, 〈kpub〉),
where 〈kpri〉 ∈ [1, ord(G)) and 〈kpub〉 = g〈kpri〉 mod N2.

Encryption & Decryption. To encrypt a message m ∈ Z
∗
N ,

a random value r ∈ Z
∗
N is first chosen. Then, using the public

key 〈kpub〉, we can compute the ciphertext (c1, c2) according

to Eq. 4

c1 = gr mod N2, c2 = (1 +mN)〈kpub〉r mod N2. (4)

Knowing the private key, we can decrypt the ciphertext as

follows.

m =
1

N
(c2/c

〈kpri〉
1 − 1 mod N2). (5)

The above encryption is semantically secure under the deci-

sional Diffie-Hellman assumption in Z
∗
N2 [9].

2

Authorized licensed use limited to: University of Queensland. Downloaded on March 07,2022 at 01:02:15 UTC from IEEE Xplore. Restrictions apply.

Key Agreement. FEDXGB invokes the key agreement

function Key.Agr to generate the shared key used for the

shared key encryption and secret masking in the secure ag-

gregation process. Given a user’s private key 〈kpri,u〉 and

a public key of another user 〈kpub,v〉, Key.Agr outputs

〈ku,v〉 = 〈kpub,v〉〈kpri,u〉 mod N2. It can be proved that

Key.Agr is also secure under the decisional Diffie-Hellman

assumption in Z
∗
N2 [9].

C. Secret Sharing

FEDXGB utilizes Shamir’s secret sharing scheme [10]

to deal with the user dropout problem. Two functions are

involved in the Shamir’s secret sharing scheme, share gen-

eration SS.Share and secret reconstruction SS.Recon.

Given the secret s, the threshold t and a set of users U ,

SS.Share(s, t, n) outputs a set of shares for each user

{(u, ζu)|u ∈ U}. Inversely, given at least t shares, SS.Recon
recovers the secret s by the Lagrange polynomials. For se-

curity, SS.Share and SS.Recon work on a finite field

F = Z
∗
p, where p is a big prime. Note that since FEDXGB

uses the above functions to secretly share the private key, p
has to be bigger than ord(G), which is the order of the group

used in Key.Gen.

D. Share-Key Encryption

FEDXGB uses the shared-key encryption to avoid the

adversary’s eavesdropping while transmitting the secret shares.

For security, the encryption function Enc is required to be

indistinguishable under a chosen plaintext attack (IND-CPA).

Given a share key 〈ku,v〉 and message m, Enc outputs a ci-

phertext cu,v =Enc(〈ku,v〉,m), and Dec(〈ku,v〉, cu,v) outputs

the plaintext m.

III. OVERVIEW OF FEDXGB

In this section, we briefly overview the system design of

FEDXGB for mobile crowdsensing. To provide a better under-

standing of FEDXGB, we first list the entities of FEDXGB,

illustrated in Fig. 1. Then, we define the security model of

FEDXGB. Finally, the workflow of FEDXGB is presented,

shown in Fig. 2.

A. Entities of FEDXGB

FEDXGB consists of three types of entities: a set of users

U and a central server S.

User

Local
Database Gradients

Generate The Shares of
Private Mask Key

Masked
Gradients

Masked
Aggregations

Optimal
Split

Central Server

 Setup

 Setup

Send to
Other Users

Collect
Candidate
Splits

Compute Mask

Private Mask
Key Shares Received

Shares

Collect The
Shares of

Dropout Users

New CART

Loop L1

Unmasked
Aggregations

Fig. 1. Entities of FEDXGB

Users. U = {u1, u2, ..., un}. Each u ∈ U is a mobile

user that volunteers to participate in federated learning and

is connected with other users and the central server.

Central Server. S is owned by a mobile crowdsensing

service provider. The aggregation of the model update for

FEDXGB proceeds in S, but S is not trusted by the users.

B. Security Model

In FEDXGB, our security model is based on the curious-
but-honest model, a standard security model in federated

learning [4], [8], [11]. In the model, each entity of the protocol

is curious-but-honest, defined in Definition 1.

Definition 1 [12]. In a communication protocol, a curious-but-
honest entity does not deviate from the defined protocol, but
attempts to learn all possible information from the legitimately
received messages.

In addition, we introduce an active adversary into our secu-

rity model who has the following abilities. A has the following

abilities: 1) simultaneously corrupt less than t legitimate

users and the central server; 2) eavesdrop the communication

channels; 3) for the corrupted entities, A can access to all

their data in plaintext, e.g., private keys and random seeds;

4) is limited to have polynomial-time computation power.

FEDXGB needs to achieve the following security goals.

• Goal 1: Data Privacy. S cannot learn the private data of

u ∈ U , no matter u is active or loses connection in the

training process.

• Goal 2: Forced Aggregation. Considering the secure

gradient aggregation of federated learning, we limit that

S cannot ignore a specific user’s uploaded model update

without prior notice.

C. Workflow of FEDXGB

Three protocols are involved in FEDXGB, namely secure

CART building (SecBoost), secure split finding (SecFind) and

secure aggregation (SecAgg). SecFind and SecAgg are two

sub-protocols of SecBoost. Here, we briefly overview how the

three protocols work in FEDXGB.

Secure CART Building
(SecBoost)

CARTLoop L1

Setup Mask Key
Sharing

Split
Finding

Loop L2

Trained
XGBoost

SecFind SecAgg
Invoke

Invoke

Fig. 2. Workflow of FEDXGB

As shown in Fig 2, FEDXGB trains an XGBoost model

by iteratively invokes SecBoost. SecBoost takes three steps,

which are setup, mask key sharing and split finding. SecFind
is used to complete the split finding step of SecBoost, and

SecAgg is invoked by SecFind to securely aggregate gradients.

1) Setup. A trusted key generate center setups the crypto-

graphic parameters. U and S utilize the parameters to

generate their cryptographic keys used in the following

steps. We say that such a key generation center is

3

Authorized licensed use limited to: University of Queensland. Downloaded on March 07,2022 at 01:02:15 UTC from IEEE Xplore. Restrictions apply.

a typical role in modern networks, e.g., the digital

certificate management center.

2) Mask Key Sharing. Before uploading the gradients for

CART building, each user secretly shares its private

mask key. Thus, even the user accidentally drops out,

S can still recover its mask key and continue to get a

correct gradient aggregation result.

3) Split Finding. As stated in Section II-A, an XGBoost

model is composed of multiple CARTs. To build a

CART, the key operation is to find the optimal split

for the leaf node. SecBoost achieves split finding by

invoking SecFind. In SecFind, the user first locally

calculates the gradients based on the candidate splits

published by S. The gradients include both wi and

hi, defined in Eq. 2. Then, S aggregates each user’s

gradients by SecAgg. Having the aggregation result, S
can derive the scores of all candidate splits according

to Eq. 2. Finally, S chooses the one with the maximum

score and use it to add a new branch in the current

CART.

By repeating the above steps (Loop L1 in Fig. 2), S can

obtain a well trained CART fk. Further, S publishes the newly

trained CART and continues to build the next CART (Loop L2

in Fig. 2). In the end, S gets a trained XGBoost model f(x) =∑K
κ=1 fκ(x), where K is the maximum training round.

IV. TECHNICAL INTUITION

For federated learning, the most critical operation is the

secure gradient aggregation. In this section, we introduce the

intuition to design our secure aggregation protocol and present

its implementation details.

A. IBM’s Homomorphic Aggregation Scheme

To ensure an honest-but-curious central server to reliably

aggregate data, a popular method is using the homomor-

phic encryption technique. Recently, IBM proposes such a

homomorphic aggregation scheme for federated learning [8]

(abbreviated as IBMHOM) as follows.

IBMHOM is based on the t-threshold Paillier cryptosys-

tem [13], that is, the ciphertext must be decrypted with more

than t secret keys. Assume that each user u holds a gradient xu

and one of the secret keys. Express the t-threshold encryption

algorithm as ThEnc. To aggregate all users’ gradients, u
samples a random value ru ∈ Z

∗
N and computes:

[[xu]] = ThEnc(xu + εu, ru, 〈tkpub,S〉), (6)

where 〈skpub,S〉 is the public key and ε is the Gaussian

noise to implement differential privacy against the inference

attack [14]. Then, [[xu]] is uploaded. Using the homomorphism

of the Paillier cryptosystem, the central server S can get

[[
∑

u∈U xu]] =
∏

u∈U [[xu]]. Next, S randomly chooses t users

and orderly ask them to decrypt [[
∑

u∈U xu]]. In the process,

if any user drops out, S has to ask another user to decrypt.

Finally, with the partial decryption results of all the t users,

S can recover the plaintext aggregation result.

B. Our Hybrid Masking Scheme SecAgg

We notice that the secure aggregation scheme above has

two disadvantages. First, the aggregation of S is unforced.

If a malicious server does not aggregate a specific user’s

data, it can still get a correct decrypted aggregation result of

the remaining data. In other words, a malicious server can

directly ask the users to decrypt a specific user’s data, and the

users cannot be aware of this. Also, the vulnerability makes it

easier to launch an update-leak attack [15]. Second, the user

is responsible for sending, encrypting and decrypting the data

at the same time, which is too costly for a user. To resolve

the problems, we propose a new secure aggregation scheme

SecAgg, shown in Protocol 1.

In SecAgg, u first computes the shared mask keys with

other users by Key.Agr and secretly share its private mask

key. Then, u samples a random value ru and masks xu using

the masking function SecMask.

[[xu]] =SecMask(xu, ru, 〈sku,v〉, 〈skpub,S〉)
=[1 + (xu +Υu)N] · 〈skpub,S〉ruϕ(gru) mod N2.

(7)

where Υu =
∑

u<v ϕ(〈sku,v〉)−
∑

u>v ϕ(〈sku,v〉), 〈skpub,S〉
is the public mask key of the central server S, ϕ(·) is a pseudo-

random function with a fixed-length output. [[xu]] is sent to

S. In the process, S records the received mask values and

the senders and then publishes a list of the senders U ′. The

active users in U ′ return gru and the shares of the dropout

users’ private mask keys. Using the shares, S recovers the

private mask key of the dropout users and computes the shared

mask keys between the dropout users and the other users.

Finally, the aggregation result can be obtained according to

line 8, Protocol 1. Notably, it is observed that SecAgg can

be simply extended with differential privacy in a similar way

of IBMHOM. However, since the inference attack is not the

fundamental problem of this paper, we omit the extended

implementation.

Correctness. Express the dropout users as u0 ∈ U/U ′.
Based on our cryptographic definitions, the unmasking process

(line 8, Protocol 1) can be expressed as Eq. 8 and Eq. 9.∑
u∈U ′

xu =[1 +N
∑
u∈U ′

(xu +Υu)] · 〈skpub,S〉
∑

u∈U ruϕ(gru)

· g−〈skpri,S〉
∑

u∈U ruϕ(gru) +
∑

u∈U/U ′
Υu mod N2,

(8){
Υu =

∑
u<v ϕ(〈sku,v〉)−

∑
u>v ϕ(〈sku,v〉) mod p∑

u∈U Υu =
∑

u∈U ′ Υu +
∑

u∈U/U ′ Υu = 0
.

(9)

Since 〈skpub,S〉 = g〈skpri,S〉, we can prove that the unmasking

result is the correct aggregation result by combining the above

two equations.

V. SECURE CART BUILDING OF FEDXGB

In this section, we present the details of FEDXGB for

federated XGBoost training. In the protocols, the following

notions are specified. All users are orderly labeled by a

4

Authorized licensed use limited to: University of Queensland. Downloaded on March 07,2022 at 01:02:15 UTC from IEEE Xplore. Restrictions apply.

Protocol 1 Secure Aggregation (SecAgg)

Input: A server S; a user set U ; u ∈ U holds a secret xu and a set of other user’s private mask shares {ζv,u|v ∈ U/u}.
Output: S obtains the aggregated users’ secrets Λ.

1: for u ∈ U do
2: Generate 〈sku,v〉 ←KEY.Agr(〈skpri,u〉, 〈skpub,v〉) for v ∈ U/u and selects a random value ru ∈ ZN .

3: Compute [[xu]]←SecMask(xu, ru, 〈sku,v〉, 〈skpub,S〉) and send [[xu]] to S .

4: end for
5: S checks the dropout users in the above iteration and publishes the active user list U ′.
6: Each user checks whether it is in U ′. If yes, send gru and {ζv,u|v ∈ U/U ′} to S, otherwise, wait for the next invocation.

7: S computes R ← ∏
u∈U ′ gruϕ(gru), and for u0 ∈ U/U ′, recovers 〈skpriu0

〉 ←SS.Recon({ζu0,v|v ∈ U ′}, t) to compute

{〈sku0,v〉|v ∈ U ′} and Υ←∑
u0∈U/U ′(

∑
u0<v,v∈U ϕ(〈sku0,v〉)−

∑
u0<v,v∈U ϕ(〈sku0,v〉)).

8: S obtains
∑

u∈U ′ xu ← 1
N [(

∏
u∈U ′ [[xu]]) · R−〈skpri,S〉 − 1 + Υ] mod N2.

sequence of indexes (1, 2, ..., n) to represent their identities.

Each user is deployed with a small local dataset Du.

A. Secure CART Building SecBoost

User

Local
Database Gradients

Generate The Shares of
Private Mask Key

Masked
Gradient

Aggregation

Masked
Aggregations

Optimal
Split

Central Server

 Setup

 Setup

Send to
Other Users

Collect
Candidate
Splits

Compute Mask

Private Mask
Key Shares

Received
Shares

Collect The
Shares of

Dropout Users

New CART

Loop L1

Unmasked
Aggregations

Fig. 3. Detailed Overview of SecBoost

As mentioned before, an XGBoost model is composed of

multiple CARTs. FEDXGB implements secure CART building

by invoking SecBoost, shown in Protocol 2. Referring to the

overview illustrated in Fig. 3, we introduce the detailed steps

of SecBoost.
Step 1 - Setup: In the step, U and S setup the cryptographic

keys. To achieve this, a trusted key generation center samples

the parameters for key generation and secret sharing, including

a cyclic group (G, q1, q2, N = q1q2, g) and a finite field Z
∗
p.

Then, the public cryptographic parameters (G, g,N) and Z
∗
p

are published to both U and S. Using the public parameters,

each u ∈ U invokes Key.Gen to generate two pairs of

keys, (〈ekpri,u〉, 〈ekpub,u〉) and (〈skpri,u〉, 〈skpub,u〉), which

are used for shared key encryption and secret masking in

secure aggregation, respectively. Meanwhile, S generates a

pair of masking keys, (〈skpri,S〉, 〈skpub,S〉) and determines

the secret sharing threshold t. Finally, U and S exchange their

public keys.

Step 2 - Mask Key Sharing: To deal with the user’s

accident dropout, each user previously generates random

shares of its private mask keys. For a specific user u, it

computes {(u, ζu,v)|v ∈ U} ← SS.Share(〈skpri,u〉, t, n).
For each selected user v ∈ U , u encrypts one of the shares

cu,v ←Enc(〈eku,v〉, u||v||ζu,v) and sends the encryption

result to it, where 〈eku,v〉 ←Key.Agr(〈ekpri,u〉, 〈ekpub,v〉).

The user v decrypts cu,v and extracts ζu,v . ζu,v is stored and

used to recover the private mask key if u drops out.

Step 3 - Split Finding: Assume that the feature set of the

user data is Q = {α1, α2, ..., αq}. According to the boosting

method defined in XGBoost [1], S randomly selects a sub-

sample of all features Q′ ⊂ Q and inputs it to SecFind
to find the optimal split. The detailed split finding method

and optimization criteria are stated in the next section. To

build a new CART with an optimal structure, S successively

operates the above steps until the current tree depth reaches the

maximum depth or other termination conditions are met [1].

Finally, SecBoost outputs a well trained CART fκ.

B. Secure Split Finding SecFind

The most important operation of the CART building in

XGBoost is to find the optimal split from all candidate splits

to branch the leaf node. The candidate splits are evaluated with

the split scores computed by Eq. 2. The optimal split is the

split with the maximum score. In FEDXGB, split finding is

implemented by SecFind, presented in Protocol 3. Details of

SecFind are as follows.

First, u ∈ U computes the gradients of the local training

samples (hi and wi, defined in Eq. 2). Then, S invokes SecAgg
twice to get the aggregation of the two kinds of gradients H
and G. Next, for each given candidate feature α ∈ Q′, S
enumerates all possible candidate splits and publishes them

to U . Similar to the above aggregation process for H and G,

S collects the left-child gradient aggregation results for each

candidate split. The aggregation results are used to compute

the score for each candidate split. When the iteration is

terminated, SecFind returns the split with the maximum score

and its corresponding feature. Intuitively, with the optimal

split, S can add a new branch in current CART by splitting

an old leaf node into two new leaf nodes. Moreover, if the

termination condition is reached after the splitting, S extra

computes the weights of the leaf nodes with the aggregated

gradients by Eq. 3.

C. Robustness against User Dropout.

Two possible cases of user dropout in FEDXGB are dis-

cussed as follows.

5

Authorized licensed use limited to: University of Queensland. Downloaded on March 07,2022 at 01:02:15 UTC from IEEE Xplore. Restrictions apply.

Protocol 2 Secure Extreme Gradient Boosting Based Tree Building (SecBoost)

Input: A central server S, a user set U = {u1, ..., un} and a key generation center T .

Output: A well-trained CART.

1: Step 1 - Setup:
2: Given the security parameter �, T randomly selects three strong primes p, q1 and q2, and samples a cyclic group

(G, q1, q2, N = q1q2, g), where g is a generator with order ord(g) = (q1−1)(q2−1)
2 and p > ord(g). (G, g,N) and p

are published to both u ∈ U and S.

3: Each u ∈ U compute (〈ekpri,u〉, 〈ekpub,u〉)←Key.Gen(g,N, �) and (〈skpri,u〉, 〈skpub,u〉)←Key.Gen(g,N, �).
4: S generates (〈skpri,S〉, 〈skpub,S〉)←Key.Gen(g,N, �) and determines the secret sharing threshold t.
5: S and U publish their public keys.

6: Step 2 - Mask Key Sharing:
7: u ∈ U computes the shares of its private mask key 〈skpri,u〉 by {(u, ζu,v)|v ∈ U} ← SS.Share(〈skpri,u〉, t, n).
8: For v ∈ U , u sends cu,v ←Enc(〈eku,v〉, u||v||ζu,v), where 〈eku,v〉 ←Key.Agr(〈ekpri,u〉, 〈ekpub,v〉).
9: v ∈ U decrypts ζu,v ←Dec(〈eku,v〉, cu,v), and stores (u, ζu,v).

10: Step 3 - Split Finding:
11: S randomly selects a feature sub-sample Q′ from the full feature set Q.

12: S invokes SecFind(Q′,U) to determine the current optimal split.

13: Repeat Step 3 until reaching the termination condition.

Protocol 3 Secure Split Finding (SecFind)

Input: The sub-sampled feature set Q′; the user set U ; u ∈ U
holds a set of shares about other user’s private mask keys

{ζv,u|v ∈ U/u}
1: u ∈ U computes hu ←

∑|Du|
i=1 hi and wu ←

∑|Du|
i=1 wi.

2: S invokes H ←SecAgg(S,U , {hu|u ∈ U}, {ζv,u|u ∈
U , v ∈ U/u}) and W ←SecAgg(S,U , {wu|u ∈ U},
{ζv,u|u ∈ U , v ∈ U/u}).

3: for 1 ≤ q ≤ δ do
4: S enumerates every possible candidate split Aq =
{a1, a2, ..., am} for feature αq ∈ Q′ and publishes them

to U . For each ar ∈ Aq , take the following steps.

5: Based on the candidate splits, u ∈ U computes hu,L ←∑|DL|
i=1 hi and wu,L ←

∑|DL|
i=1 wi.

6: S invokes HL ←SecAgg(S,U , {hu,L|u ∈ U},
{ζv,u|u ∈ U , v ∈ U/u}) and WL ←SecAgg(S,U ,
{wu,L|u ∈ U}, {ζv,u|u ∈ U , v ∈ U/u}).

7: S computes HR ← H −HL and WR ←W −WL.

8: score← max(score,
W 2

L

HL+λ +
W 2

R

HR+λ − W 2

H+λ).
9: end for

10: return The optimal split with maximum score.

Case 1: A user u0 drops out at the first or second step of

SecBoost. In such a case, the user becomes illegal. S refuses

u0 to be involved in the current round of training and replaces

the user by another active user if possible.

Case 2: A user u0 drops out during the secure aggregation

process of split finding. S recovers the private mask key

of u0 and removes u0 from U , that is, the active user

list becomes U ′ ⊆ U and u0 ∈ (U \ U ′). To recover

the private mask key of u0, S collects the shares of its

private mask key from at least t users, i.e., {ζu0,v|v ∈ U ′}
and |U ′| > t. Then, S recovers the private mask key

of u0 through 〈skpri,u0〉 ←SS.Recon({ζu0,v|v ∈ U ′}, t).

Using 〈skpri,u0
〉, S computes the shared mask keys that

u0 uses to mask the gradients, {〈sku0,v〉|v ∈ U}, where

〈sku0,v〉 ←KEY.Agr(〈skpri,u0
〉, 〈skpub,v〉). Finally, S adds

the shared mask keys to the aggregated result, shown in line 8,

Protocol 1. In this way, S can still get the correct aggregation

result of remaining active users’ gradients, whose correctness

has been discussed in Section IV.

VI. SECURITY ANALYSIS

In this section, we discuss the security of FEDXGB for

secure aggregation and XGBoost training.

A. Security of SecAgg

For SecAgg, we first present how it achieves our security

goals, and then, give a more formal security proof in the next

sub-section.

SecAgg achieves forced aggregation because from the anal-

ysis of correctness, ignoring any user’s data makes S unable

to get a meaningful result. Then, consider a single user’s

masked value [[xu]] derived by Eq. 7. For an eavesdropper

or a malicious user, [[xu]] is a ciphertext encrypted with the

server’s public key, which is semantically secure based on the

security of Bresson’s cryptosystem [9]. If a malicious central

server is included, there are two conditions required to be

discussed: a) when the user does not drop out, the adversary

can decrypt [[xu]] but cannot obtain xu that is masked by Υu.

b) when the user drops out, the adversary can access both

Υu and 〈skpri,S〉. However, since gru is unknown, [[xu]] is

still undecipherable. Further, assume that the central server

is a more active attacker (out of the scope of our security

model). In such a case, the central server can cheat the user

to upload gru by sending a forged active user list. We can

defend the attack by letting the user sign the active user list

U ′ and exchanging it with other users. Thus, by checking the

consistency of U ′, the user can defend the active attack.

6

Authorized licensed use limited to: University of Queensland. Downloaded on March 07,2022 at 01:02:15 UTC from IEEE Xplore. Restrictions apply.

B. Security of FEDXGB

The security of FEDXGB for XGBoost training is deter-

mined by three protocols, SecBoost, SecFind and SecAgg. To

prove the protocols’ security, we adopt the standard formal

definition of security Definition 2 [16].
Definition 2. We say that a protocol π is secure if there exists
a probabilistic polynomial-time (PPT) simulator ξ that can
generate a view for the adversary A in the real world and the
view is computationally indistinguishable from its real view.

Moreover, our security still needs the following lemma.
Lemma 1 [17]. A protocol is perfectly simulatable if all its

sub-protocols are perfectly simulatable.
Interested readers can refer to [17] for the detailed proof of

Lemma 1. According to Lemma 1 and Definition 2, to prove

the security of FEDXGB, we just have to prove that all of its

protocols are simulatable for a PPT simulator. Since SecAgg
is a sub-protocol that is frequently invoked by SecFind, we

merge the proof of SecAgg into SecFind. The security proofs

of SecFind and SecBoost are given below.
Theorem 1. For SecFind, there exists a PPT simulator ξ
that can simulate an ideal view which is computationally
indistinguishable from the real view of A.
Proof. Denote the views of the user u ∈ U as

Vu = {viewu1
, ..., viewun

}. From SecFind, we can de-

rive that viewui = {hui , wui , rui , g
rui , [[hui]], [[wui]], 〈sku,v〉,

〈skpri,ui
〉, 〈skpub,v〉, 〈skpub,S〉} and viewS = {H,W,Hj ,

Wj , A,HL, HR,WL,WR, score,Y,R,K, 〈skpri,S〉}, where

u ∈ U , v ∈ U , R = {[[hui
]], [[wui

]]|u ∈ U ′}, R = {grui |u ∈
U ′}, K = {〈skpri,ui

〉|u ∈ U/U ′}. [[hui
]], [[wui

]], Y , R and K
are the variables used in SecAgg.

We prove the security of SecFind according to the universal

composition theorem (UC) [18]. Assume that there is an ideal

functionality F that can be called by a simulator ξ. F has

the ability to ideally generate uniformly random values and

operate the cryptographic functions of FEDXGB. We say that

with F , there exists such a simulator that can simulate both the

honest entity and the corrupted (curious-but-honest) entity in

SecFind as follows. For the corrupted entity, ξ can access all

its local data, including the private keys, training samples and

etc., based on our security model. Therefore, ξ can simply

use the corrupted data to simulate the corrupted entity. For

the honest entity, the simulation is a little complicated. To

simulate an honest user, ξ first asks F to generates random

values as dummy function inputs hui , wui , rui and 〈skpri,S〉.
Then, use the dummy inputs to derive other variables to ask

F to complete the protocol steps. Similarly, ξ can use the

same way to simulate an honest server. It is observed that

the elements in V iewui
or V iewS are either the ciphertext

in the Bresson’s cryptosystem or random values (hui and

wui are private, which can be seen as random values). Since

the Bresson’s cryptosystem is semantically secure [9], the

dummy function outputs are computationally indistinguishable

from the real ones. Consequently, there exists a simulator

that can generate the simulated views Simui
and SimS that

are indistinguishable from V iewui and V iewS . Based on

Definition 2, Theorem 1 holds and SecFind is secure. �

Theorem 2. For SecBoost, there exists a PPT simulator ξ
that can simulate an ideal view which is computationally
indistinguishable from the real view of A.
Proof. Denote the views of the user and the central

server for SecBoost as Vu = {viewu1 , ..., viewun}
and VS . The view of the user is viewui =
{〈skpri,ui

〉, 〈skpub,ui
〉, 〈ekpri,ui

〉, 〈ekpub,ui
〉, cv,u, {ζv,u|v ∈

U ′}, view′ui
}. For the central server, we have

viewS = {〈skpub,S〉, 〈skpri,S〉view′S}, view′ui
and view′S are

the views generated by SecFind. Except for the encryption

keys randomly selected from Z
∗
N , the remaining elements of

viewui
and viewS are random shares or ciphertexts encrypted

with the shared key encryption algorithm. According to

Shamir’s secret sharing theory [19], the shares can be

regarded as random values uniformly selected from Z
∗
p. To

simulate the ciphertexts and random shares, a simulator ξ can

use the ideal functionality F defined in the proof of SecFind
to generate random values as dumpy cryptographic function’s

inputs. Since the shared key encryption algorithm is assumed

to be indistinguishable under a chosen plaintext attack, the

corresponding dumpy outputs cannot be computationally

distinguished. Moreover, view′ui
and view′S have been proved

to be simulatable in the proof of Theorem 2. Thus, there

exists a simulator ξ that can simulate a corrupted entity

or an honest entity of SecBoost and the simulated view is

computationally indistinguishable from the real view. Based

on Definition 2, Theorem 2 holds and SecBoost is secure. �
According to Lemma 1 and the above proofs, it is concluded

that FEDXGB is a simulatable system. Based on the formal

definition of security given in Definition 2, FEDXGB is secure.

VII. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate

the effectiveness and efficiency of FEDXGB.

A. Experiment Configuration

To evaluate FEDXGB, we ran single-threaded simulations

on a Windows desktop with an Intel Core i7-8565U CPU

@1.8Ghz and 16G RAM. The programs are implemented

in Python and C++. Two standard datasets are used in

the experiments, ADULT1 and MNIST2, both of which are

commonly used to evaluate the performance of federated

learning schemes [4], [11], [20]. The Bresson’s cryptosystem

is conducted with a key size of 512 bits.

The shared-key encryption is operated by 128-bit AES-

GCM [21]. Given each dataset, the instances are averagely

and randomly assigned to each user with no overlap. User

dropout is assumed to occur every 10 rounds of training in

our experiment. That is, 0%, 10%, 20%, 30% of users are

randomly selected to be disconnected at each 10th round of

training.

1ADULT: https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets
2MNIST: http://yann.lecun.com/exdb/mnist/

7

Authorized licensed use limited to: University of Queensland. Downloaded on March 07,2022 at 01:02:15 UTC from IEEE Xplore. Restrictions apply.

B. Evaluation of FEDXGB

To assess the performance of FEDXGB, we first evaluate its

effectiveness with ADULT and MNIST. Then, we experiment

with its runtime to find an optimal split to test its efficiency.

0 200 400 600 800 1000
0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

ur
ac

y

Boosting Stage

(a) Accuracy with different user
dropout rates for ADULT.

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

L
os

s

Boosting Stage

(b) Loss with different user dropout
rates for ADULT.

0 50 100 150 200 250
0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

A
cc

ur
ac

y

Boosting Stage

(c) Accuracy with different user
dropout rates for MNIST.

0 50 100 150 200 250

0.30

0.35

0.40

0.45

0.50

0.55

0.60

L
os

s

Boosting Stage

(d) Loss with different user dropout
rates for MNIST.

Fig. 4. Accuracy and loss for each round of training with MINST and ADULT.
Different lines show different dropout rates.

The effectiveness of FEDXGB is assessed with two indica-

tors that are commonly used to evaluate a machine learning

model, namely classification accuracy and loss. Fig. 4 presents

the accuracy and loss for each round of training in FEDXGB.

More specific, Fig. 4(a) and Fig. 4(b) describe the accuracy

and loss of ADULT, and Fig. 4(c) and Fig. 4(d) show the result

of MNIST. For ADULT, the accuracy peaks after around 100

rounds. For MINST, the convergence speed is faster, peaking

at around the 20th rounds. Compared with the non-federated

XGBoost, FEDXGB only introduces the accuracy loss with

less than 1%. Consider the user dropout rate increased from

0% to 30%, FEDXGB is robust against the user changes.

The performance decrease is mainly due to the loss of data

caused by the user dropout. In Table II, we list the runtime and

communication cost of different stages to execute SecBoost to

find an optimal split in FEDXGB without user dropout. The

processed data in the experiment is ADULT. The user number

is set to 500. The system setup cost is ignored. The result

indicates that the main overhead in FEDXGB is caused by

the split finding step, because numerous secure aggregation

protocols are invoked. Therefore, in the next section, we

comprehensively analyze the efficiency of SecAgg.

C. Efficiency Analysis of SecAgg

To further assess the efficiency of FEDXGB, we simulate

the runtime and communication costs of SecAgg under differ-

ent numbers of users, input sizes and dropout rates.

TABLE II
SECBOOST RUNTIME IN DIFFERENT STAGES WITHOUT USER DROPOUT

Stage
RunTime (s) Communication (MB)

U S U S
Mask Key Sharing 0.89 N.A. 0.06 N.A.

Split Finding 1.22 249.97 26.86 46.25

Total Cost 2.11 249.97 0.05 13.57

Theoretical Analysis. Suppose the transmitted data is a vector

with m entries. The length of N is N =
log2 N�. The

user number is n. For communication, each user sends one

random seed, m ciphertexts and O(n) shares for private mask

key and dropout users, whose complexity is O(m + n). The

server receives the user’s ciphertexts, the random seeds and

key shares of dropout users, whose overhead is O(nm+ n2).
For computation, suppose the modular exponentiation costs

1.5N multiplications [22]. Each user computes 2m times mod-

ular exponentiation and O(n2) multiplications for sharing the

private mask key, which takes O(mN + n2) time. The server

conducts mn times modular exponentiation to decryption and

O(n2) multiplications for data recovering of the dropout user,

which takes O(mnN + n2) time.

50 100 150 200 250 300 350 400 450 500 550
0

200

400

600

800

R
un

tim
e

(s
)

User Number

No Dropout
10% Dropout
20% Dropout
30% Dropout

(a) Runtime as the user number in-
creases.

100 150 200 250 300 350 400 450 500

5

10

15

20

25

30

35

40

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(M

B
)

User Number

No Dropout
10% Dropout
20% Dropout
30% Dropout

(b) Communication overhead as the
user number increases

Fig. 5. Efficiency evaluation of the central server with fixed input size 500.
Different lines show different dropout rates.

100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

R
un

tim
e

(s
)

Input Size

No Dropout
10% Dropout
20% Dropout
30% Dropout

(a) Runtime as the input size in-
creases.

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(M

B
)

Input Size

No Dropout
10% Dropout
20% Dropout
30% Dropout

(b) Communication overhead as the
input size increases.

Fig. 6. Efficiency evaluation of the central server with fixed user number
500. Different lines show different dropout rates.

Impact of Users. The runtime and communication overhead

of the central server and the user with different user numbers

are plotted in Fig. 5, Fig. 7, respectively. The input size is

fixed to 500. The steps of setup and the shared mask keys

8

Authorized licensed use limited to: University of Queensland. Downloaded on March 07,2022 at 01:02:15 UTC from IEEE Xplore. Restrictions apply.

generation can be previously completed, therefore, they are not

included in the evaluations. We omit the plot of the runtime

and communication overhead of the user with different dropout

rates, as the user just has to send the private mask key shares

of the dropout users, which has little impact on the metrics.
As shown in Fig. 5(a) and Fig. 7(a), it is shown that the

runtime for the central server and the user grows with the

increasing user number. For the central server, the runtime

is mostly spent on the modular exponentiation to decrypt the

masked aggregation result. For the user, most computational

costs are also focused on the modular exponentiation but for

masking the gradient. The user dropout rate has a significant

influence on the runtime of the central server because the

operation for recovering the shared mask key of the dropout

users involves the costly modular exponentiation. Fig. 5(b)

and Fig. 7(b) illustrate the communication overhead for the

user and the central server. The communication overhead for

both the user and the central server also linearly increases

as the user number increases. As the dropout rate grows,

the communication overhead of the central server is barely

influenced because only a little overhead increment is caused

by collecting the private mask key shares for the dropout user.

50 100 150 200 250 300 350 400 450 500 550

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

R
un

tim
e

(s
)

User Number

Input Size 100
Input Size 200
Input Size 300
Input Size 400
Input Size 500

(a) Runtime per user as the user
number increases.

100 150 200 250 300 350 400 450 500
20

40

60

80

100

120

140

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(K

B
)

User Number

Input Size 100
Input Size 200
Input Size 300
Input Size 400
Input Size 500

(b) Communication overhead per
user as the user number increases.

Fig. 7. Efficiency evaluation of the user without user dropout.

Impact of Input Size. The runtime and communication

overhead of the user and the central server with different input

sizes are plotted in Fig. 6 and Fig. 7, respectively. In XGBoost,

the input size is equal to the multiplication of the sub-sampled

feature number and the enumerated candidate split number. In

the experiments, the number of users is fixed to 500. When

the input size increases from 100 to 1000, the runtime cost

for each user increases because of the masking operation,

illustrated in Fig. 7(a). The growth of the central server’s

runtime is mainly caused by the more masked aggregation

result required to be decrypted. As a larger scale of inputs is

involved, the communication overhead of the central server is

expanded, shown in Fig. 6(b). For the user, Fig. 7(b) shows

that the communication overhead is linearly influenced by the

input size. Compared with the number of users, the input size

has a less obvious influence on the runtime and communication

overhead, which is consistent to our theoretical analysis result

given in Section IV.
Comparison. Besides IBMHOM, we compare the effi-

ciency of FEDXGB with the functional Paillier encryption

based secure aggregation scheme (abbreviated as FPE) [23].

TABLE III
EFFICIENCY COMPARISON WITH FIXED USER NUMBER 500, INPUT SIZE

500 AND NO USER DROPOUT

FEDXGB IBMHOM [8] FPE [23]

Rt.
Server 557.97 596.03 952.07

User 3.03 4.67 2.55

Comm.
Server 30.57 67.13 30.58

User 0.12 0.18 0.08

Rt. → Runtime (s); Comm.→ Communication overhead (MB)

We implement all the three methods in our desktop, re-

ferring to the python library for Paillier’s cryptosystem3.

Moreover, for fairness, we cancel the noise addition operation

of IBMHOM. Considering the secure aggregation, the can-

cellation does not influence the security of IBMHOM. The

threshold of IBMHOM is set to 0.6×n. Table III summarizes

the comparison result. It is observed that compared with

IBMHOM, FEDXGB outperforms it in all indicators. Note that

during the experiments, we find that the server in IBMHOM

requires very little time to decrypt the aggregation result when

the user number is small, e.g., the user number n is less

than 100. This is because, for the HE algorithm used in

IBMHOM, the complexity of the exponent length involved in

the decryption is O(n log n), not fixed O(logN) in FEDXGB.

When the user scale is small, IBMHOM is faster. However, in

real-world applications, such a small scale of users is almost

impossible. For FPE, although its communication overhead

and user runtime are less than FEDXGB, its server has to

conduct double times modular exponentiation to unmask the

encrypted aggregation result, which greatly increases its run-

time. Therefore, when applied to federated learning, FEDXGB

is still more practical than FPE.

VIII. RELATED WORK

Google’s federated learning is a kind of privacy-preserving

machine learning framework originally proposed for the mo-

bile crowdsensing scenario [4]. Due to the high performance

on security and efficiency, federated learning attracts a lot of

attention as soon as being proposed. Up to now, most of the

existing federated learning schemes are designed towards the

stochastic gradient descent (SGD) based neural networks. For

example, Wang et al. [24] provided an edge computing based

federated learning scheme for the convolutional neural network

(CNN) in the Internet of Things (IoT) environment. Mcmahan

et al. [20] applied federated learning to the long-short term

memory network (LSTM) based language model and gain

better performance than the traditional centralized machine

learning method. Smith et al. [25] proposed a general federated

learning framework for the neural network to simultaneously

process multi-tasks, which solves the stragglers and fault

tolerance problems in the real-world network and significantly

improved the efficiency of the original federated learning

3https://github.com/data61/python-paillier

9

Authorized licensed use limited to: University of Queensland. Downloaded on March 07,2022 at 01:02:15 UTC from IEEE Xplore. Restrictions apply.

framework. Nonetheless, there is none of the existing work that

gives a systematical federated learning scheme for XGBoost,

a special tree structure machine learning model.

To avoid the adversary to analyze the hidden information

about private user data from the uploaded gradient values [14],

almost all of the current federated learning schemes intro-

duce the secure aggregation mechanism. The existing secure

aggregation schemes for federated learning mainly depend

on three types of cryptographic tools. The first and most

popular tool is differential privacy (DP). Mcmahan et al. [20]

is one of the outstanding works using DP to protect the

gradient’s security. Nonetheless, the introduction of noises for

DP is pointed to be able to lead non-erasable accuracy loss

to the trained model [26]. The second tool is secret sharing

(SS), especially the Shamir’s secret sharing scheme. In [11],

Bonawitz proposed a novel SS based secure aggregation

scheme against user dropout. However, since having to operate

data reconstruction for all users, no matter the user is dropout

or not, the communication cost of [11] explodes with the

increasing of the user number. The last tool is homomorphic

encryption (HE). For HE, the most commonly used HE method

is the Pailliar cryptosystem [27] and its variants [9], [28].

Although many HE schemes are proposed [6], [8], [29], none

of them solve the forced aggregation problem while preserving

the robustness against user dropout.

IX. CONCLUSION

In this paper, we proposed a privacy-preserving federated

extreme gradient boosting scheme (FEDXGB) for mobile

crowdsensing. In FEDXGB, a new hybrid secure aggregation

scheme is first presented by combining homomorphic encryp-

tion and secret sharing, which can force the central server to

conduct the aggregation operation, and is robust against user

dropout. Then, using the newly designed secure aggregation

scheme, we designed a suite of secure protocols to implement

the classification and regression tree building of XGBoost.

Comprehensive experiments were conducted to evaluate the

effectiveness and efficiency of FEDXGB. Experiment results

showed that FEDXGB made it possible to train an XGBoost

with negligible performance loss, and attained computation

and communication cost reduction for secure aggregation.

ACKNOWLEDGMENT

This work was supported by the National Natural Sci-

ence Foundation of China (Grant No. 61872283, 61702105,

U1764263, U1804263), the China 111 Project (No. B16037).

REFERENCES

[1] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2016, pp. 785–794.

[2] P. Rustgi and C. Fung, “Droidnet-an android permission control recom-
mendation system based on crowdsourcing,” in 2019 IFIP/IEEE Sym-
posium on Integrated Network and Service Management (IM). IEEE,
2019, pp. 737–738.

[3] D. Garcia, Y. M. Kassa, A. Cuevas, M. Cebrian, E. Moro, I. Rahwan, and
R. Cuevas, “Analyzing gender inequality through large-scale facebook
advertising data,” Proceedings of the National Academy of Sciences, vol.
115, no. 27, pp. 6958–6963, 2018.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, 2017, pp. 1273–1282.

[5] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” arXiv preprint
arXiv:1912.04977, 2019.

[6] K. Yang, T. Fan, T. Chen, Y. Shi, and Q. Yang, “A quasi-newton method
based vertical federated learning framework for logistic regression,”
arXiv preprint arXiv:1912.00513, 2019.

[7] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, and Q. Yang, “Se-
cureboost: A lossless federated learning framework,” arXiv preprint
arXiv:1901.08755, 2019.

[8] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, and R. Zhang,
“A hybrid approach to privacy-preserving federated learning,” arXiv
preprint arXiv:1812.03224, 2018.

[9] E. Bresson, D. Catalano, and D. Pointcheval, “A simple public-key
cryptosystem with a double trapdoor decryption mechanism and its
applications,” in International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 2003, pp. 37–54.

[10] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[11] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp. 1175–1191.

[12] A. Paverd, A. Martin, and I. Brown, “Modelling and automatically
analysing privacy properties for honest-but-curious adversaries,” Tech.
Rep., 2014.

[13] I. Damgard and M. Jurik, “A generalisation, a simplification, and some
applications of paillier’s probabilistic public-key system, presented at
the 4th international workshop on practice and theory in public key
cryptosystems, cheju island,” Korea, 2001.

[14] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond
inferring class representatives: User-level privacy leakage from federated
learning,” in IEEE INFOCOM 2019 Conference on Computer Commu-
nications. IEEE, 2019, pp. 2512–2520.

[15] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang,
“Updates-leak: Data set inference and reconstruction attacks in online
learning,” arXiv preprint arXiv:1904.01067, 2019.

[16] Z. Ma, Y. Liu, X. Liu, J. Ma, and K. Ren, “Lightweight privacy-
preserving ensemble classification for face recognition,” IEEE Internet
of Things Journal, 2019.

[17] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework
for fast privacy-preserving computations,” in European Symposium on
Research in Computer Security. Springer, 2008, pp. 192–206.

[18] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE Symposium on Security and
Privacy. IEEE, 2017, pp. 19–38.

[19] R. J. McEliece and D. V. Sarwate, “On sharing secrets and reed-solomon
codes,” Communications of the ACM, vol. 24, no. 9, pp. 583–584, 1981.

[20] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learn-
ing differentially private recurrent language models,” arXiv preprint
arXiv:1710.06963, 2017.

[21] M. Bellare and B. Tackmann, “The multi-user security of authenticated
encryption: Aes-gcm in tls 1.3,” in Annual International Cryptology
Conference. Springer, 2016, pp. 247–276.

[22] D. E. Knuth, Art of computer programming, volume 2: Seminumerical
algorithms. Addison-Wesley Professional, 2014.

[23] M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu, “Multi-input
functional encryption for inner products: function-hiding realizations
and constructions without pairings,” in Annual International Cryptology
Conference. Springer, 2018, pp. 597–627.

[24] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp. 63–
71.

[25] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Advances in Neural Information Processing
Systems, 2017, pp. 4424–4434.

[26] C.-L. Chen, R. Pal, and L. Golubchik, “Oblivious mechanisms in
differential privacy: experiments, conjectures, and open questions,” in

10

Authorized licensed use limited to: University of Queensland. Downloaded on March 07,2022 at 01:02:15 UTC from IEEE Xplore. Restrictions apply.

2016 IEEE Security and Privacy Workshops (SPW). IEEE, 2016, pp.
41–48.

[27] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in International Conference on the Theory and Applica-
tions of Cryptographic Techniques. Springer, 1999, pp. 223–238.

[28] I. Damgård and M. Jurik, “A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system,” in Proceedings
of the 4th International Workshop on Practice and Theory in Public Key
Cryptography, 2001, pp. 119–136.

[29] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, and H. Ludwig, “Hybridalpha:
An efficient approach for privacy-preserving federated learning,” in
Proceedings of the 12th ACM Workshop on Artificial Intelligence and
Security, 2019, pp. 13–23.

11

Authorized licensed use limited to: University of Queensland. Downloaded on March 07,2022 at 01:02:15 UTC from IEEE Xplore. Restrictions apply.

