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Abstract—The rapid development of device-edge-cloud collab-
orative computing techniques has actively contributed to the
popularization and application of intelligent service models. The
intensity of knowledge transfer plays a vital role in enhancing
the performance of intelligent services. However, the existing
knowledge transfer methods are mainly implemented through
data fine-tuning and model distillation, which may cause the
leakage of data privacy or model copyright in intelligent col-
laborative systems. To address this issue, we propose a secure
and robust knowledge transfer framework through stratified-
causality distribution adjustment (SCDA) for device-edge-cloud
collaborative services. Specifically, a simple yet effective density-
based estimation is first employed to obtain uncertainty scores
that guide the space stratification, which is conducive to recon-
structing low-density distribution regions from high-density dis-
tribution regions more adaptively and accurately. Subsequently,
we devise a novel causality-aware generative model to generate
synthetic features for the out-of-distribution domain by exploring
the relationship between factors and variables. Ultimately, we
introduce a cycle-consistent minimax optimization mechanism
to ensure the effectiveness and dependability of knowledge
transfer through the influence minimization and the diversity
maximization. Furthermore, extensive experiments demonstrate
that our scheme can protect the security of data privacy and
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model copyright in intelligent collaborative services through
adaptive distribution adjustment.
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I. INTRODUCTION

THE rapid development of device-edge-cloud collaborative
computing techniques has revolutionized the field of arti-

ficial intelligence (AI)1. Through the power of multiple device
connections, edge computing infrastructures, and centralized
cloud resources, this innovative paradigm enables AI models to
overcome the limitations of traditional computing architectures
[2]. Therefore, a large number of AI tasks arise in our daily
lives, including smart healthcare, financial management, and
autonomous driving. Since diverse data provide rich informa-
tion for model selection to obtain good desired results, the
feedback data generated by these tasks can potentially enhance
the generalization performance of AI models [3]. In addition,
the generalization capability of pre-trained models plays a cru-
cial role in boosting the quality of AI services2. Currently,
domain adaptation (DA) [4], [5], transfer learning (TL) [6],
[7] and out-of-distribution (OOD) generalization [8], [9] are
usually employed to improve the knowledge transferability and
generalization performance of AI models.

Typical DA or TL methods are inevitably prone to discover
shared or transferable representations from the source scene to
fulfill the tasks in the target scene [10]. While most recent works
[9], [11] of OOD generalization mainly attempt to extrapolate
and optimize the empirical risks in the objective function, which
allows a model to generalize to a new testing domain. However,
when faced with severe distribution shifts caused by multiple
bias factors (MBFs), such as domain differences [4], skewed
distributions [7], and incorrect labels [5], the accuracy of the
model decreases dramatically due to the lack of robustness.
To be specific, since the model does not take into account the
diverse scenarios presented by the MBFs during training, this
leads to poor robustness and performance on unseen data. In
other words, it is difficult to make robust and accurate predic-
tions because the model is sensitive to the shifts between source
and target features. Moreover, enhancing the accuracy in limited

1https://aws.amazon.com/cn/ [1]
2https://openai.com/research/ai-and-compute
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Fig. 1. The entire architecture diagram for artificial intelligence (AI) ser-
vices through knowledge transfer in device-edge-cloud collaborative systems.
The conventional approaches enhance the generalization capability by data
upload and model fine-tuning, and then provide AI services through model
download and adaptive deployment. In this way, there exist two main
limitations in prior work: 1) the problem of data privacy leakage and 2) the
risk of model copyright violation. However, we propose a stratified-causality
distribution adjustment scheme, i.e., adaptively filling low-density data regions
from high-density data regions, which ensures the security and robustness of
the knowledge transfer process.

target domains or the generalization without goal can merely be
regarded as a partial approximation to the real-world scenarios.
Thus, a more practical problem is how to guarantee the effec-
tiveness of knowledge transfer in a remarkable distribution shift
scenario, which can make the model more pointed and powerful
to achieve the overall generalization.

The existing knowledge transfer methods exhibit excellent
performance in ideal or specific scenarios [7]. In other words,
these approaches either focus on improving the detection accu-
racy or the generalization ability in target tasks. However, in in-
telligent collaborative systems, the direct utilization of sensitive
data and the duplicate copy of pre-trained model may raise se-
curity concerns of data privacy leakage and model copyright in-
fringement [12], [13]. Fig. 1 provides an entire architecture for
implementing AI services through knowledge transfer, in which
the differences between traditional methods and our scheme are
compared. As a result, the direct application of existing knowl-
edge transfer methods in intelligent collaborative services poses
the risk of data privacy leakage and model copyright infringe-
ment. Moreover, we show that only taking into account the
improvement of domain-specific accuracy or task-independent
generalization is insufficient for constructing robust knowledge
transfer framework. We give counterexamples from two aspects
under the condition of MBFs in device-edge-cloud collaborative
systems: 1) a domain-specific model has satisfactory accuracy
but usually fails to generalize to other OOD domains and 2) a
task-independent model has good generalization ability but may
fail to recognize unseen samples in some particular domains.

Fig. 2 compares the challenges faced by different solu-
tions to improve the intensity of knowledge transfer in severe

Fig. 2. The comparison of generalization performance for different methods
under severe distribution shift conditions. (a) Due to the adverse impacts of
MBFs, the direct application of traditional DA or TL methods will lead to the
extremely limited generalization in the target domain. (b) OOD generalization
can only complete the partial generalization in a certain range under the
condition of severe distribution shifts. (c) Our scheme is implemented to resist
the severe distribution shifts and achieve the secure and robust knowledge
transfer in an overall generalization manner.

distribution shift scenarios. Specifically, when the learned
source knowledge is deployed to assist target classification, the
source-target distribution alignment is not enough to increase
the generalization performance in the target domain. The reason
is that the distribution alignment is achieved only when the
distribution of stable representations is the same across dif-
ferent domains. However, it is difficult to satisfy this require-
ment under the adverse impacts of MBFs [14]. In addition,
the OOD generalization boundary of the model may not fully
cover a given task in real-world datasets due to the lack of
robustness [15]. For instance, in digit classification, handwriting
styles vary from individual to individual, which may lead to
misalignment and overfitting generalization performance [4].
Our investigation reveals that simultaneously considering the
improvement of the overall generalization performance and the
specific prediction capability can resist the severe distribution
shifts caused by MBFs in intelligent collaborative services.

To guarantee secure and robust knowledge transfer in device-
edge-cloud collaborative platforms, we propose a stratified-
causality distribution adjustment (SCDA) scheme based on
flexible space division and latent representation inference. The
motivation of leveraging adaptive distribution adjustment is
to manipulate data at the distribution level to prevent privacy
leakage and copyright infringement, while ensuring the secu-
rity and robustness of knowledge transfer under the condition
of MBFs. The requirement for the direct sharing of raw data
across domains is minimized by reconstructing low-density
distribution regions from high-density distribution regions in an
adaptive and accurate manner. Since unique features and char-
acteristics are protected during knowledge transfer, the adaptive
distribution adjustment plays a crucial role in safeguarding the
copyright of models. Specifically, we develop a density-based
ratio estimation strategy that provides an uncertainty score for
each sample to describe the anomaly degree and complete the
partitioning of subspace. The conditional variational autoen-
coder (CVAE) is exploited to construct a novel causality-aware
data generation module, which combines causal and non-causal
attributes across different subspaces to infer the effects of the
interference-free and interference-active shifts by performing
counterfactual analysis. Finally, a cycle-consistent minimax
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optimization mechanism is introduced to minimize the influ-
ence and maximize the diversity of synthetic features, which
enables a perfect distribution matching for the implementation
of secure and robust knowledge transfer in intelligent collab-
orative scenarios. Moreover, we evaluate our proposed SCDA
on Rotated MNIST, CIFAR-10 & STL-10 and Colored PACS
datasets, and promising results on all datasets have demon-
strated the effectiveness of the proposed scheme. In summary,
the contributions of our work are as follows:

• We propose a density-based ratio estimation strategy to
quantify the uncertainty degree for each sample, which can
guide and adjust the partitioning of subspace by analyzing
the distribution characteristics. The experimental evalua-
tion in Section VI-D shows that the reasonable subspace
partition can distinguish the anomaly degree and is more
suitable for deployment under secure and robust knowl-
edge transfer scenarios.

• We exploit the adaptive data generation to infer and ex-
pand the prior knowledge by combining basic features
and state features under the guidance of counterfactual
causality. In this way, low-density distribution regions can
be adaptively reconstructed from high-density distribution
regions, which is crucial to preserve in-distribution (ID)
samples and expand beneficial OOD samples in intelligent
collaborative services.

• We present a cycle-consistent minimax optimization
mechanism for ensuring robustness of knowledge transfer
by identifying learnable and informative synthetic sam-
ples from the given candidate pool. Large scale experi-
ments using ablation analysis demonstrate that our scheme
can achieve superior performance by simultaneously
considering both the influence minimization and the di-
versity maximization.

• To the best of our knowledge, this is the first work to
develop a stratified-causality distribution adjustment for
secure and robust knowledge transfer in device-edge-cloud
collaborative services. Our proposed scheme not only pro-
tects data privacy and model copyright, but also withstands
distribution shifts and eliminates potential negative effects.

The rest of the article is organized as follows. Section II
reviews the related work. Section III introduces the funda-
mental background and preliminary knowledge. Section IV
analyzes and gives the threat model. Section V describes the
proposed SCDA scheme for secure and robust knowledge trans-
fer. Section VI evaluates and compares our novel SCDA with
the related state-of-the-art methods in extensive experiments.
Finally, the conclusions and future research directions are sum-
marized in Section VII.

II. RELATED WORK

A. Data-Centric Distribution Matching

A data-centric idea is mainly designed and implemented
based on data augmentation to expand available datasets, con-
trol model overfitting, provide the interoperability across differ-
ent distributions and obtain superior results in the classification
tasks [14], [16]. Data augmentation has received attention in

existing works for distribution matching [17]. For example, Hsu
et al. [18] presented an augmentation-based approach to gen-
erate disentangled latent representations of speech with extra
data whose distribution is more close to the desired target data.
However, the disentangled image representations in the latent
space are a challenging issue to achieve. Instead, we employ a
conditional variational autoencoder (CVAE) where the learned
transferable knowledge can be merged and fed into the decoder
in order to generate the expected features. In addition, Huang
et al. [17] proposed a weakly supervised generative adversarial
network (GAN) based model for image-to-image translation
and investigated the performance in image-translation tasks
rather than classification tasks which is our focus in this work.
Then, Ng et al. [19] formulated a data augmentation framework
based on self-supervised manifolds to improve out-of-domain
robustness by using a pair of reconstruction and corruption
functions. Different from these studies, in our work, a novel
distribution adjustment based on data augmentation is proposed
to adaptively generate target-specific and diverse features by
stratified causality learning across distributions and its effec-
tiveness is verified through comparative experimental results
in Section VI.

B. Causality-Aware Knowledge Exploration

Incorporating causal perception [20] into deep neural net-
works (DNNs) has recently attracted more and more attention
[21]. It can not only improve the interpretability of DNNs, but
also boost the exploration of meaningful knowledge and causal
relationship in essence. Therefore, it has been widely used
in many fields, such as image recognition [22], personalized
recommendation [23], visual question answering [24] and scene
graph generation [25]. Yue et al. [22] presented a counter-
factual framework for generating synthetic samples to address
both zero-shot learning and open-set recognition problems. Fol-
lowing this, Wang et al. [23] developed the recommendation
models with a causal graph to reflect the cause-effect factors
by performing counterfactual inference. Inspired by the great
success of the causal theory, Wang et al. [24] exploited a visual
commonsense region-based network for visual question an-
swering tasks via causal intervention, which can capture sense-
making knowledge to alleviate the observational bias. Then,
Tang et al. [25] introduced a scene graph generation (SGG)
framework to deal with the biased data distributions of SGG
by counterfactual causality. Although these methods perform
well in above tasks, the robustness of knowledge transfer cannot
be adequately addressed and analyzed through goal-less causal
reasoning in intelligent collaborative services. Therefore, our
work introduces causal perception into the knowledge transfer
task to reason about the effects of different shifts by enforc-
ing counterfactual causality on a task-oriented causal represen-
tation learning.

C. Spurious Correlations and OOD Generalization

The recent literature has shown that DNNs may learn su-
perficial representations to make the knowledge transfer, such
as by relying on the background regions or other kinds of
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spurious rules [26]. Such case raises practical concerns because
the accuracy may deteriorate under the shifts in those spurious
correlations [15]. Simultaneously, it can also result in the unfair
bias and worse performance on minority categories under the
condition of imbalanced scenarios. Since Arjovsky et al. [9]
introduced invariant predictions into a more realistic situation, a
considerable amount of research has made remarkable progress
in mitigating spurious correlations and capturing stable fea-
tures. Krueger et al. [15] presented the risk extrapolation to
enforce and constrain the variance of losses across different dis-
tributions. Similarly, Koyama and Yamaguchi [11] formulated
a comprehensive set of theoretical analysis and guidance for an
invariant representation to fulfill the OOD optimality. Kamani
et al. [8] provided a unified data-driven regularization frame-
work to construct a generalizable model from biased domain
knowledge, which can exploit a target dataset that approximates
the essence of the required test data to reinforce the learning ca-
pacity of the model. Moreover, the biases in the realistic datasets
are usually employed in a spurious way, so the robustness of
OOD generalization will be poor. Another line of research [27]
aims to design a debiasing technique to address the bias problem
and obtain better performance. Some recent works [28], [29]
have started to focus on the privacy-preserving issues during
knowledge transfer or OOD generalization. To our best knowl-
edge, the proposed SCDA is the first framework for knowledge
transfer to improve the overall generalization performance with
the security and robustness consideration in device-edge-cloud
collaborative systems. In addition, our SCDA scheme consid-
ers not only the adaptive distribution adjustment but also the
matching between datasets and models (e.g., stratified causal
perception and cycle-consistent minimax optimization).

III. PRELIMINARIES

A. Robust OOD Generalization

In the classical OOD generalization setting, given the fea-
tures {x1

εT , ..., x
n
εT } from a testing domain εT , we aim to learn

a function to identify the labels {y1εT , ..., ynεT } using labeled
data {(x1

εA , y
1
εA), ..., (x

m
εA , y

m
εA)} from an available domain εA

[9]. Let X and Y represent the variable of feature and label,
respectively. In contrast to the standard supervised learning
scenario, the joint distributions PεA(XY ) and PεT (XY ) are
mismatched. Specifically, if there are two datasets D1 and D2

collected from two subspaces, we assume that they are derived
fromPε1(XY ) and Pε2(XY )with different subspaces of ε1 and
ε2. If l(f(X), Y ) denotes the error between the ground truth Y
and the prediction f(X), the OOD generalization problem can
be formulated by finding f∗ that solves

min
f

max
ε∈ε

EX,Y [l(f(X), Y )|ε], (1)

where ε is the space of all possible testing domains. To im-
prove the generalization performance, existing methods usually
make the conditional distribution P (δ(X)|Y ) invariant across
domains by assuming the existence of a transformation δ. In this
article, we also assume that the conditional invariant component
exists. The common goal is to find a transformation δ such
that PεA(δ(X)|Y ) = PεT (δ(X)|Y ) and to calculate PεT (Y ).

However, we consider a more challenging OOD generalization
scenario, namely the samples drawn only from the distribution
PεT (X) and the biased distribution PεA(XY ) under the con-
dition of interference-free and interference-active shifts, which
is regarded as robust OOD generalization.

Note that the simple combination of distribution adapta-
tion and robust classifier ignores that the learning of invariant
representations can be influenced by complex domain shifts,
which may lead to significantly biased results. Learning δ be-
comes even more challenging in the setting where only mis-
matched training data and insufficient unlabeled testing data
are available. The reason is that without unbiased label Y
in both available and testing domains, there is no critical in-
formation to ensure the consistency of conditional distribu-
tion P (δ(X)|Y ). In addition, it is difficult to learn δ and to
calculate PεT (Y ) as discussed above. Therefore, we propose
a novel stratified-causality-based adaptive distribution adjust-
ment scheme to identify PεT (Y ) and capture the conditional
invariant component δ(X) for robust OOD generalization.

B. Invertible Mapping via Normalizing Flows

The deep invertible generation models, or normalizing flows,
are a set of likelihood-based mappings that reflect the bidi-
rectional transformation relationship between a simple and a
complex continuous probability density through the change of
variables formula. The flows are parameterized by deep neural
networks gτ : X →Z with well-designed architectures so that
the entire transformation consists of diverse two-way mappings
with the tractable inverse and the Jacobian determinant [30].
Similarly, g−1

τ : Z →X represents the inverse of the mapping
function gτ . As a consequence, the probability density p of
random variable X = g−1

τ (Z) can be accurately calculated:

p(x) = q(gτ (x))

∣
∣
∣
∣
det

∂gτ (x)

∂x

∣
∣
∣
∣
, (2)

where q denotes the probability density of the variable Z.
The basic (prior) distribution q(z) is generally selected as an
isotropic Gaussian N (0, I), and the simplicity of estimating
this prior density, together with the tractability of g−1

τ and its
Jacobian, enables us to obtain the normalizing flow through
maximum likelihood. We exploit the key invertibility of nor-
malizing flows to compute the uncertainty based on density
ratio estimation (DRE). That is, if the design dimensions of
X and Z are the same, and data points can be mapped mu-
tually and losslessly between the two latent spaces. As we
will discuss in Section V, this will be vital for converting the
density ratios learned in the latent space back to that obtained in
the input space. The improved density ratio estimation makes
the mismatched distributions closer to each other in the latent
space, which is beneficial to calculate the uncertainty scores
more accurately.

Due to the irreversibility, the non-invertible neural networks
may lead to imprecise space division, which in turn affects
the overall performance. However, in this article, the invertible
normalizing flow is trained on a mixture of datasets collected
from the different distributions and then exploited to map the
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Fig. 3. Flowchart of traditional DRE and DRE based on invertible nor-
malizing flows. Traditional DRE directly applying a black-box algorithm on
samples will result in an inaccurate ratio estimation r̂(x) when p and q
are drawn from dramatically different distributions. The normalizing flow gτ
is trained on samples from diverse densities, which can be used to obtain
more accurate ratio estimation r̂(gτ (x)) by encoding biased data in a shared
feature space.

samples into a shared feature space. In this way, the data are
encoded by leveraging the invertibility of normalizing flow, and
the observed samples of different densities are converted to be
located in a unit Gaussian sphere. Moreover, we observe that
this contraction contributes to mitigating the distribution shift
to improve the learned ratio estimation. In other words, the in-
vertibility of feature map ensures that the ratios computed in the
latent space are the same as those in the input space. Therefore,
the key component of DRE is an invertible normalizing flow to
complete the calculation of the uncertainty scores. A flowchart
of DRE based on invertible mapping via normalizing flows can
be seen in Fig. 3.

C. Causal Intervention via Interaction Adjustment

The causal graph [31] is a directed acyclic graph (DAG),
expressed as G = {N ,R}, which describes how a set of nodes
(variables) N interact with each other by a causal relationship
R. Since the basic features (e.g., “class attributes”) and the state
features (e.g., “transformation attributes”) mutually affect the
prediction results from different aspects, we construct a node-
link causal graph to investigate potential causal relationships
among the basic features, the state features and the class labels,
as illustrated in Fig. 4. The node U denotes the basic feature xu,
the node V represents the state feature xv, and the node Y is
the class label. The edge U → Y indicates that basic feature U
is used to predict class label Y , and the edge V → Y denotes
that the state feature V is used to predict class label Y . We
learn these edges by a classification network, which exploits
the conventional cross-entropy loss between the class labels yεA
and the feature mapped to XεT .

We perform counterfactual intervention [32] via interaction
adjustment on the node-link causal graph to analyze the effect
of the interference-free and interference-active shifts from the
basic and state features. Specifically, do(U = u) means that
we assign a certain value u to the node U through different
combinations of basic features. Given a sample from the sub-
space ε, denoted as xε, we have U = xε,u, V = xε,v , and the

Fig. 4. A node-link causal graph to analyze the effect of the interference-
free and interference-active shifts.

output Y is represented as YUV = yxε,uxε,v
. A counterfactual

reasoning scenario is defined by performing the intervention on
the basic feature to evaluate the effect, where the basic feature
is erased by do(U = xε,u) and the node V is retained as the
original state feature xε,v. The erased basic feature xε,u is set
as the zero vector of the same dimension as xε,u. The output
variable Y after intervention is represented as a counterfactual
YUV = yxε,uxε,v

, which is distinguished from YUV . It is easy to
infer the effect of the interference-free shift on xε by comparing
the deviation between YUV and YUV , which is formulated as

FE(xε) = YUV − YUV = yxε,uxε,v
− yxε,uxε,v

. (3)

Similarly, we erase the state feature by do(V = xε,v) while
maintaining the node U as the original basic feature xε,u, and
obtain the counterfactual YUV = yxε,uxε,v

. Then, the effect of
the interference-active shift on xε is formulated by

AE(xε) = YUV − YUV = yxε,uxε,v
− yxε,uxε,v

. (4)

We evaluate the influence of the two mode shifts for each
class in the subspace ε by averaging the estimated effects
FE(xε) and AE(xε), which are formulated as follows

FEk
ε =

1

Nk

Nk∑

i=1

I(ŷiε = k)FE(xi
ε), (5)

and

AEk
ε =

1

Nk

Nk∑

i=1

I(ŷiε = k)AE(xi
ε), (6)

where FEk
ε and AEk

ε denote the influence of the interference-
free and interference-active shifts of the k-th class, respectively,
ŷiε is the observed label of xi

ε, and Nk represents the number of
samples classified into the k-th class. I(·) denotes an indicator
function, indicating that if ŷiε = k, the value of I(ŷiε = k) is 1,
otherwise 0.

Based on the above analysis, in the absence of stratified
causal reasoning, it is hard to figure out the influence of different
variables on the distribution shifts, and thus unable to learn
generalizable and discriminative representations. Motivated by
that, we deploy a stratified-causality distribution adjustment
scheme, which can adaptively improve the quality of data dis-
tribution to ensure the security and robustness of knowledge
transfer in intelligent collaborative applications.
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IV. THREAT MODEL

We discuss the objective, capability and knowledge of the
adversary for stealing attacks. We consider a scenario in which
a victim uploads downstream data to update the pre-trained
model by adopting transfer learning techniques (e.g., fine-
tuning operation or knowledge distillation), and then seeks to
improve the performance for better AI services by deploying the
updated model.

The objective of adversary. The adversary aims to steal the
private data or violate the model copyright during intelligent
collaborative scenarios in one of the following ways:

• Privacy leakage attack. An adversary tries to perform
illegal access in data transmission or storage on various
service resources (e.g., device, edge, cloud). This includes
potential attacks, such as malicious data tampering, unau-
thorized data access, and private data leakage.

• Copyright infringement attack. The knowledge transfer in-
volves the sharing of model parameters and the alignment
of intermediate representations, which can lead to the risk
of intellectual property theft. Therefore, an adversary may
exploit vulnerabilities in deployment and application to
extract or clone well-trained models used under intelligent
collaborative services.

The capability of adversary. During the transfer learning
process, an adversary can adopt malicious samples and then
induce the model to output sensitive data by executing queries.
Since this attack does not make any manipulation on the specific
samples, we mainly consider the performance of knowledge
transfer under the condition of protecting data privacy. More-
over, during the deployment and application of a well-trained
model, an adversary may steal the intellectual property through
direct replication operations or model surrogate attacks.

The knowledge of adversary. The adversary can access
the pre-trained model by using elaborated samples and then
record the correct predictions (i.e., the real decision-making
behavior of model) through input-output pairs from the ac-
cessible test batch. However, the adversary cannot access the
training data or the training process. In this article, the proposed
SCDA scheme focuses on the effectiveness of handling severe
distribution shifts while mitigating the risk of data leakage and
copyright infringement.

V. THE PROPOSED SCHEME

A. Detailed Problem Statement

We formulate the secure and robust knowledge transfer as a
new setting since the severe distribution shifts caused by mul-
tiple bias factors are more realistic but challenging problems,
where 1) we only have access to mismatched data in the avail-
able domain εA and unlabeled data in the testing domain εT ;
2) both PY and PX|Y change across different bias con-
ditions. We find that if the information of interference is
obtained from the observation data, a specific relationship be-
tween PεA(δ(X)|Y ) and PεT δ(X) can be established, which is,
in turn, a cue for us to learn invariant components from δ(X).
Moreover, we observe that the slight label error does not impact

the distribution of δ(X). So, intuitively, if we remove the variable
Ŷ from the inaccurate labels, PεA(δ(X)|Y ) = PεT (δ(X)|Y )
can be achieved by aligning the marginal distribution Pδ(X).
With the above analysis, in this article, we try to solve the secure
and robust knowledge transfer problem by adaptive distribution
adjustment scheme, which combines the advantage of uncer-
tainty quantification and causal perception and has feasibility of
handling highly biased feature distributions across domains to
improve the performance under intelligent collaborative scenar-
ios. Consequently, data privacy leakage and model copyright in-
fringement can be avoided through adaptive distribution adjust-
ment. The pipeline of SCDA is presented in Fig. 5. The details
of each stage will be elaborated in the subsequent sections.

B. Adjustable Space Division With Uncertainty Quantification

The challenge of uncertainty quantification is to guarantee
that the distribution discrepancy between p and q is closer
together to make the DRE problem feasible and tractable. In
our article, the degree of uncertainty for data points is described
based on DRE, which can eliminate outlier samples and achieve
subspace division by setting thresholds. To accomplish this
goal, we leverage an invertible mapping to perform density
estimation and uncertainty calculation for each sample in the
latent space. Specifically, we train a model gτ on a mixture
density of p(x) and q(x) using an invertible deep generative
network, such that both gτ (Xp) and gτ (Xq) are mapped to
the common feature space Z . By mapping the low density
region in X to the high density region in Z , and training our
probability classifier cφ on gτ (x) ∈ Z instead of x ∈ X directly,
this contraction enables a more accurate density ratio to be
learned. Let Xp ∼ p denote a random variable with density
p, and Xq ∼ q represent a random variable with density q. If
there exists an invertible mapping gτ , so that p′ and q′ are the
densities of Zp = gτ (Xp) and Zq = gτ (Xq) respectively, then
the following equation can be obtained for any x:

p(x)

q(x)
=

p′(gτ (x))

q′(gτ (x))
. (7)

In practice, we employ a pre-trained flow gτ as an invert-
ible encoder to map the inputs into the common feature space
with the separate training strategy, which is able to handle all
parametric and non-parametric models working directly in the
input space. For example, in the probabilistic classification case,
the DRE algorithm needs to realize the binary classifier cφ to
identify Dp and Dq . To facilitate this process, we adapt the
normalizing flow gτ to learn the known structure of cφ. As
a consequence, the normalizing flow gτ and the discriminant
classifier cφ can be jointly trained according to the following
objective function:

Ljoint(τ, φ) = λLsup(τ, φ) + (1− λ)Lflow(τ), (8)

where Lsup represents the standard binary cross entropy (BCE)
loss, Lflow is the maximum likelihood estimator of the flow gτ ,
and λ ∈ [0, 1] denotes a tuning parameter which balances the
importance between the Lsup and Lflow in the loss function.

Inspired by the excellent performance of invertible neural
networks (INNs) [30], [33], we modify the architecture of
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Fig. 5. Overview of our proposed scheme. (a) Adjustable space division. The uncertainty scores are exploited to map the samples to different subspaces to
determine the degree of importance for the original data transformed to an adjacent augmented space. (b) Stratified causality-aware sample generation. The
encoder and decoder are trained and conditioned on the different subspaces εi or εj (i, j ∈ [1, n]). We consider interventions do(Ui = U i) and do(Vj = V j)
to perform counterfactual analysis to infer the effects of the interference-free and interference-active shifts. Given a hidden representation zεi or zεj as
the input, the model generates reconstructed samples x′

εi
or x′

εiεj
from the subspace εi with the guidance of counterfactual causality. (c) Cycle-consistent

minimax optimization. Minimizing the influence aims at improving the quality of individual samples by removing invalid ones, while maximizing the diversity
is designed to obtain a diverse dataset from candidate pool without considering quality.

classifier cφ by discriminative training and combine it with
the architecture of gτ to construct a probabilistic classifier
cφ,τ : X → [0, 1], which is trained only by BCE loss Lsup(τ, φ).
Moreover, it is assumed that the density of reliable samples is
roughly similar to that of adjacent samples, while the density
of unreliable samples is significantly different from that of its
neighbors. Therefore, the greater the relative density ratio, the
higher the degree of uncertainty for samples. Based on this
consideration, for the given data point, the ratio of density to
its neighboring density is calculated as the uncertainty score,
which can be formulated mathematically as follows:

US(x) = (r̂ ◦ gτ )(x) =DRE(p′(gτ (x)), q
′(gτ (x))), (9)

where (r̂ ◦ gτ )(x) denotes the composite function r̂(gτ (x)),
and DRE(·) is density ratio estimation function that can be
obtained by directly utilizing or slightly modifying the existing
methods. Ultimately, adjustable space division is achieved to
generate diverse subspaces by exploring and setting different
thresholds α based on the computed uncertainty scores.

The complete procedure of adjustable space division using
uncertainty quantification is summarized in Algorithm 1 in
Appendix B. It can be observed that, except for the threshold
determination, the uncertainty partitioning process exploits the
pre-trained normalizing flow to encode samples into a common
feature space and then inserts them into the base DRE(·) to
obtain more accurate uncertainty scores, which are implicitly
coupled with the trained flow.

C. Adaptive Data Augmentation Using Stratified Causality

After inferring the effects of the interference-free and
interference-active shifts, our method uses the stratified causal
perception to promote the knowledge transfer for the purpose
of generating synthetic features and reducing domain disparity,

which does not aim to directly tackle the distribution mismatch
problem. Instead, it learns prior knowledge from dense sample
regions (low uncertainty scores) to adaptively assist the synthe-
sis in sparse sample regions (high uncertainty scores), so as to
focus on the scarcity of available data in a goal-directed way.

Our proposed causality-aware adaptive generation model is
based on the conditional variational autoencoder (CVAE) and
the causal-effect relationships of domain shifts. Given input
samples xεi from different subspaces εi (i ∈ [1, n]), the encoder
tries to hierarchically learn diverse distributions pψ(zεi) from
which the latent encoding variables zεi can be causally selected
and then fed into the decoder to obtain the reconstructed input
samples, where ψ denotes the underlying parameter of the
model. The decoder can be parameterized with pψ(zεi |zεj ),
so that the model can generate the synthetic samples in the
subspace εj with the prior knowledge of the samples in the
subspace εi, and vice versa. In basic CVAE, the loss function
consists of two terms: the reconstruction loss (the first term) and
the KL-divergence between the learned and standard normal
distribution (the second term), formulated as

Lcvae(xεi ;ψ) = Lre(x
′
εi , xεi) +Dkl(N (μεi , σεi)||N (0, I)),

(10)

where x′
εi is the reconstructed sample of xεi from the subspace

εi, and μεi and σεi denote the mean and standard deviation
in the subspace εi, respectively. The KL-divergence is a reg-
ularization term that forces the learned latent representation zεi
to obey the standard normal distribution. This regularization
ensures the learned model obtain the ability of generating ben-
eficial data based on a random latent variable from a standard
normal distribution.

However, our goal is to generate synthetic features by causal
perception from latent variable layers rather than by random
sampling. To this end, the following two aspects need to be
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considered. On the one hand, with the guidance of the shift
effects, we are able to achieve the causal perceptive sampling of
meaningful variables from the latent encoding layer for feature
synthesis. On the other hand, the latent codes require to be
more discriminative across subspaces than the original, so we
relax the constraint of Dkl in Eq. (10) by replacing it with
L2 normalization. Moreover, L2 normalization can force the
mean and standard deviation vectors located on the hypersphere
rather than around the origin to facilitate the distinguishability
of latent representation zεi .

As previously described in Section III-C, the causal percep-
tion compares the influence of two different shifts in the sub-
space εi and the subspace εj , denoted as ekεi = (FEk

εi , AE
k
εi)

and ekεj = (FEk
εj , AE

k
εj ), where k denotes the class label. We

introduce a novel inference loss term, Linf , to reduce the
difference via the weighted angular similarity, which can be
mathematically written as

Linf (e) =

M∑

i,j=1(i�=j)

N∑

k=1

θ(ekεi , e
k
εj ) · s(e

k
εi , e

k
εj ), (11)

where M denotes the total number of subspaces, and N rep-
resents the total number of categories. In addition, θ(ekεi , e

k
εj )

denotes the weight coefficients of the corresponding angle, and
s(ekεi , e

k
εj ) is a function to describe the angle correlation. We ex-

ploit the radial basis function (RBF) kernel to obtain the weight
value between ekεi and ekεj , which is formulated as follows:

θ(ekεi , e
k
εj ) = exp

⎛

⎜
⎝−

∥
∥
∥ekεi − ekεj

∥
∥
∥

2

2

2β2

⎞

⎟
⎠ , (12)

where β denotes a kernel width that controls the impact of radial
range. Then, the angular-based correlation calculation can be
defined as:

s(ekεi , e
k
εj ) =

(ekεi)
T · ekεj

∥
∥ekεi

∥
∥
2

∥
∥
∥ekεj

∥
∥
∥
2

. (13)

To enable the capability of causally generating synthetic
features across subspaces, we train the CVAE in a novel and
causal way, denoted as CAU-CVAE. Specifically, the paired
data {xεi , xεj} belonging to the same class from different sub-
spaces are fed into the CAU-CVAE to generate a group of re-
constructed data such as {x′

εi , x
′
εj , x

′
εiεj , x

′
εjεi}. The expression

of the loss function is defined as:

Lcau−cvae(xε, e;ψ) = Lre(x
′
εi , xεi) + Lre(x

′
εj , xεj )

+ Lre(x
′
εiεj , xεj ) + Lre(x

′
εjεi , xεi)

+ γLinf (e), (14)

where γ is a trade-off parameter to control the relative impor-
tance of causal inference. The first two terms describe the intra-
domain reconstruction errors for the samples from the same
subspace. The middle two terms measure the inter-domain re-
construction errors across different subspaces. The last one term
calculates inference loss in the process of causal perception.

Although the sample pairs {x′
εiεj , xεj} or {x′

εjεi , xεi} come
from the same class, they do not necessarily belong to two views
of the same instance. To reduce the intra-domain and inter-
domain reconstruction errors, the stratified causal perception is
adopted to infer and preserve the useful information in the latent
representation space. As a result, the utilization of reconstruc-
tion loss Lre and inference loss Linf facilitate the model to
adaptively and reliably generate the diverse and discriminative
features across domains. The adaptive data augmentation based
on CAU-CVAE is summarized in Algorithm 2 in Appendix B.

D. Cycle-Consistent Minimax Optimization Mechanism

The generation method proposed above can obtain a large
number of samples, but training on all of them will consume a
large amount of computation and may degrade the performance
due to the existence of noise samples. Here, we propose a cycle-
consistent minimax optimization mechanism aimed at selecting
more effective training examples from the candidate pool.

Minimizing the influence. We minimize the influence by
filtering out detrimental synthetic samples to boost downstream
performance. A given training sample xi is considered harmful
if the inclusion of xi in the training set results in a larger
generalization error. Therefore, we can construct the following
expression by the validation loss in an approximate way:

L(X , ψ) =
1

|X |
∑

xi∈X
l(xi, ψ), (15)

L(Xval, ψ̂(Xtr ∪ {xi}))− L(Xval, ψ̂(Xtr))> 0, (16)

where Xval and Xtr denote the validation data and training
data respectively.

Hence, it is necessary to retrain the model with sample xi,
which would lead to a large amount of additional runtime.
While previous works have focused on removing or perturb-
ing the existing training samples [34], we utilize the influence
function to evaluate the performance after adding new synthetic
samples. In this way, the change in the validation loss can
be efficiently approximated by using the influence function
[34]. For instance, the effect of weighting a training sample xi

with a small disturbance η on the model parameters ψ̂ in the
corresponding parameter space Ψ is described as:

ψ̂η,x = argmin
ψ∈Ψ

ηl(x, ψ) +
1

∑Nt

i=1 ωi

Nt∑

i=1

ωil(xi, ψ), (17)

Ipara(x) :=
dψ̂η,x

dη

∣
∣
∣
∣
∣
η=0

=−H−1

ψ̂
∇ψl(x, ψ̂), (18)

where Nt is the total number of samples, ωi is the weight for the
training sample xi, and Hψ̂ denotes the Hessian evaluated at ψ̂.
Subsequently, we utilize the chain rule to obtain the influence
of upweighting the sample xi on validation loss:

Iloss(x) :=
dL(Xval, ψ̂η,x)

dη

∣
∣
∣
∣
∣
η=0

=∇ψL(Xval, ψ̂)Ipara(x).

(19)
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Note that L(Xtr, ψ) can be equivalent to the weighted aver-
age form below to incorporate a new training sample xnew:

L(Xtr, ψ) =
1

∑Nt+1
i=1 ωi

Nt+1∑

i=1

ωil(xi, ψ), (20)

whereωi = 1 (∀i 	=Nt + 1),ωi = 0 (i=Nt + 1) and xNt+1 =
xnew. When adding the training sample xnew, we obtain the
following linear combination approximation of the validation
loss change according to the influence function Iloss(x):

L(Xval,ψ̂(Xtr∪{xnew}))−L(Xval,ψ̂(Xtr))≈
1

Nt
Iloss(xnew).

(21)

We efficiently calculate Iloss by minimizing the influence,
where the detrimental synthetic data will have 1

Nt
Iloss > 0.

In this way, detrimental synthetic data, i.e., the samples that
produce a poor estimation on the validation losses, can be
filtered out.

Maximizing the diversity. While minimizing the influence
improves training data quality, it ignores the diversity that can
provide a more powerful and reliable training knowledge. To
measure the diversity, we calculate the sum of Mahalanobis
distance between each pair of samples (xi and xj) for the
selected datasets, which can be expressed as:

DM (xi, xj) =
√

(xi − xj)TC−1(xi − xj), (22)

Sdiv =

Nr∑

r=1

DMr
(xi, xj), (23)

where C means the covariance matrix of random variables,
DMr

denotes the r-th Mahalanobis distance, Sdiv is the diver-
sity measure, and Nr represents the number of combinations
of different sample pairs in the extracted samples. We present
a simple greedy algorithm that progressively and iteratively se-
lects training samples from the candidate pool to maximize the
diversity. Ultimately, the candidate sample set that maximizes
the diversity measure is selected.

The optimized candidate pool is mainly employed for the
stable model training, which provides high quality and diversity
data from original and synthetic samples to capture the charac-
teristics of distributions across different domains. The candidate
pool is a fundamental component in the cycle-consistent min-
imax optimization mechanism, which provides the flexibility
to reduce the distribution discrepancy between the source (i.e.,
seen available domain) and target (i.e., unseen testing domain)
data in knowledge transfer tasks. During the training iterations,
a random batch of samples is drawn from the candidate pool.
In this way, the update of model parameters contributes to the
reduction of distribution discrepancy between source and target
domains, which motivates the model to effectively generalize
on unseen target domains through the learning of stable and
transferable representations. In the practical implementation,
the required parameters are first determined based on the knowl-
edge transfer tasks, and then the candidate pool is optimized to
realize the desired results.

TABLE I
THE NUMBER OF DIFFERENT CATEGORIES IN THE IMBALANCED CIFAR-10

(IM-C) AND IMBALANCED STL-10 (IM-S) DATASETS

Datasets 0 1 2 3 4 5 6 7 8 Total
Im-C 800 1200 1000 800 700 1200 1000 1200 1100 9000
Im-S 900 700 1200 900 800 1100 1100 1300 1000 9000

The cycle-consistent minimax optimization through consid-
ering both the influence minimization and the diversity maxi-
mization is described in Algorithm 3 in Appendix B, which have
complementary benefits. Specifically, the former is designed to
improve the quality of individual samples by eliminating detri-
mental ones, while the latter aims to construct a diverse training
set without paying attention to the quality of data. To reap both
benefits, our proposed cycle-consistent minimax optimization
mechanism utilizes a hybrid selection technique that first elimi-
nates the detrimental data by minimizing the influence, and then
selects diverse samples by maximizing the diversity. Later, in
the evaluation, the ablation studies of the proposed SCDA are
shown in Section VI-E, which demonstrate the superiority of
cycle-consistent minimax optimization mechanism in capturing
complementary information and verify the effectiveness of our
model for secure and robust knowledge transfer.

VI. EVALUATION

A. Datasets and Model Selection

Rotated MNIST. A modified version of MNIST [35] is
generated by rotating the original grayscale MNIST digits from
0° to 90° with the interval of 15°, which is denoted as Rotated
MNIST. Each rotation angle is treated as a domain, and our
task is to complete the prediction of the class label. Since the
images of different domains are obtained from the same basic
images, there may exist diverse causal matches across domains.
Following the setting of [36], the samples with 0° and 90° are
used as the testing domain that are extremely difficult to detect,
and the rest are adopted as training domains.

CIFAR-10 & STL-10. CIFAR-10 and STL-10 are both the
10-class image datasets, which consist of 60,000 32×32 pixel
images and 13,000 96×96 pixel images, respectively. The two
datasets are similar but one class is different. Therefore, we
select the shared nine classes in the experiments. In the data
preprocessing stage, we resize the images in STL-10 to 32×32
pixels. We revise the number of different classes of images in
CIFAR-10 and STL-10 to construct two imbalanced datasets,
namely imbalanced CIFAR-10 (Im-C), and imbalanced STL-
10 (Im-S) which have different class distributions. The details
are given in Table I.

Colored PACS. PACS [37] is a public generalization per-
formance evaluation dataset with the remarkable distribution
shift across different domains. It includes seven classes (dog,
elephant, house, giraffe, horse, guitar, person) and four do-
mains, such as, Photo (P), Art paintings (A), Cartoon (C) and
Sketch (S). We drew inspiration from [38] to construct the bi-
ased dataset using color differences in the background. Primar-
ily, seven classes of objects are extracted from PACS dataset.
For the in-domain, we put onto seven different kinds of color
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backgrounds and define a one-to-one background-color rela-
tionship with seven categories (e.g., dog↔red, elephant↔blue).
For the out-domain, the color filling is performed randomly
to evaluate the generalization performance influenced by the
background factors.

Model Selection. While using validation sets from the test-
ing domain may increase classification accuracy, it violates the
motivation of generalization to unseen domains. Therefore, we
only use data from the source domain to form validation sets,
unless explicitly mentioned in Table V to explore how model
selection affects the results.

B. Implementation Details

Our robust generalization network is implemented based on
a cascaded stratified architecture. Prior to density ratio estima-
tion, a pre-trained flow gτ is leveraged as an invertible encoder
to transform the inputs into a discriminative feature space. An
invertible classifier cφ is built by modifying the architecture
to incorporate that of the flow gτ , which is trained merely
through the BCE loss Lsup(τ, φ). We then train an invertible
deep generative model based on i-RevNet [33] in a mixture
of samples to map feature distributions and obtain uncertainty
scores. Following [39], we employ the ResNet-50 [40] features
to perceive causal and non-causal variables. Our data generation
module is performed by exploiting the networks in [41]. Since
it does not take causal and non-causal attributes into account,
here we modify the encoder to construct them. Our networks are
trained for 50 epochs with early stopping rules using the Adam
[42] optimizer with a momentum of 0.9 and a decay of 0.0001.
The initial learning rate is set as 0.001 in Rotated MNIST, 0.005
in CIFAR-10, and 0.0001 in Colored PACS.

C. Compared Methods

In intelligent collaborative scenarios, we test the performance
of the proposed scheme, including the security of data privacy
and model copyright, and the robustness against distribution
shift attacks [43]. Specifically, our scheme addresses the new
challenges of knowledge transfer in severe distribution shifts
where the interference-free shift and the interference-active
shift coexist, namely X if

εA 	= X if
εT and X ia

εA 	= X ia
εT . We com-

pare our method with domain generalization or domain adap-
tation methods that mainly focus on the interference-free shift
assumption (i.e., X if

εA 	= X if
εT and X ia

εA = X ia
εT ): Meta-Learning

Domain Generalization (MLDG) [4], Universal Adaptation
Network (UAN) [5], Common Specific Decomposition (CSD)
[35], and Federated Simple Representation (FedSR) [44]. Our
scheme is also compared with OOD generalization methods that
pay more attention to the influence of distribution shift caused
by interference-active factors (i.e.,X if

εA = X if
εT andX ia

εA 	= X ia
εT ):

Invariant Risk Minimization (IRM) [9], Targeted Data-driven
Regularization (TDR) [8], and Risk Extrapolation (REx) [15].
For all the compared methods, we adopt ResNet-50 as the back-
bone network which is pre-trained on the ImageNet dataset [45].
Note that MLDG, UAN, and CSD require reference information
from target domains as input, and we give some target knowl-
edge as input to guide the model training. In the testing phase,

TABLE II
CLASSIFICATION ACCURACY (%) ON ROTATED MNIST DATASET USING

TARGET DOMAINS OF 0° AND 90°

Source MLDG UAN IRM CSD FedSR TDR REx SCDA
15°, 30°, 45°, 60°, 75° 92.6 92.1 93.3 94.5 93.6 92.7 93.9 95.3

30°, 45°, 60°, 75° 80.3 84.2 85.6 87.9 85.1 85.3 87.1 90.7
15°, 45°, 75° 70.4 65.3 73.1 75.6 73.9 74.8 77.2 80.4

30°, 60° 60.5 58.1 62.7 61.3 66.4 63.9 65.2 68.5
Average 76.0 74.9 81.2 79.8 79.8 79.2 80.9 83.7

TABLE III
CLASSIFICATION ACCURACY (%) ON ROTATED MNIST DATASET OF

DIFFERENT THRESHOLD SELECTION USING TARGET DATASETS OF 0°
AND 90°. (α1, α2, α3) REPRESENTS THREE DIFFERENT THRESHOLDS

Source
Threshold settings

Average(α1, α2, α3)
(0.3,0.6,1) (0.5,0.8,1.1) (0.6,0.9,1.2)

15°, 30°, 45°, 60°, 75° 93.4 95.6 94.7 94.6
30°, 45°, 60°, 75° 86.5 89.7 87.6 87.9

15°, 45°, 75° 76.5 81.3 77.1 78.3
30°, 60° 64.1 67.8 63.7 65.2

we input samples to be tested into the corresponding model and
take the average results to determine which categories of test
samples belong to.

D. Experimental Results

Results on the Rotated MNIST. Table II gives classification
accuracy on Rotated MNIST using testing domains with 0° and
90° rotation. From the results, it is obvious that our proposed
SCDA outperforms other methods. With the reduction of the
number of training domains, the accuracy gradually decreases
and the gap between SCDA and baselines becomes significant.
In three source domain experiments, SCDA achieves an accu-
racy of 80.4% while the second best REx achieves 77.2%. It
is worth highlighting that the adaptive distribution adjustment
through stratified-causality data augmentation can avoid both
the data privacy leakage caused by sample updating and the
model copyright infringement caused by the organization de-
ploying under intelligent collaborative scenarios. In addition,
we observe that the improvement of knowledge transfer ability
benefits from the space division based on uncertainty scores.
In the following experiments, we explore the effect of space
division generated by different threshold selection on the perfor-
mance improvement. We explore the impact of space division
on performance using different threshold settings, as shown
in Table III. It can be seen from the experimental results that
different threshold settings have an impact on performance. Ap-
propriate threshold selection is conducive to the improvement
of knowledge transfer capability. The reason is that the samples
with similar uncertainty scores in the same data space are more
effective to causal perception, which can make the changes
among samples progressive and continuous.

Results on the CIFAR-10 & STL-10. As shown in
Table IV, our proposed SCDA achieves the best accuracy in all
tasks. Compared with the domain generalization methods, CSD
and FedSR, the performance of SCDA has improved obviously.
The average accuracy of SCDA is 12.6% higher than that of
CSD. Among all compared methods, REx obtains the best
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TABLE IV
CLASSIFICATION ACCURACY (%) ON CIFAR AND STL DATASETS WITH

BALANCED AND IMBALANCED DISTRIBUTIONS COMPARED WITH

BASELINE METHODS

Tasks MLDG UAN IRM CSD FedSR TDR REx SCDA
CIFAR→ STL 56.9 59.5 60.2 63.4 64.8 60.9 67.5 72.4
STL→ CIFAR 59.7 57.1 64.8 65.2 61.9 63.2 71.6 76.3
Im-C→Im-S 56.1 53.8 53.1 56.3 55.4 57.3 60.7 69.7
Im-S→Im-C 55.2 52.4 54.6 54.7 52.0 58.8 62.1 71.6

Average 57.0 55.7 58.2 59.9 58.5 60.1 65.5 72.5

Fig. 6. Influence of candidate pool size on model performance under
CIFAR→STL and STL→CIFAR tasks.

performance, while the average accuracy of SCDA is 7% higher
than REx. For imbalanced datasets, corresponding results show
that SCDA can still significantly enhance the performance of
knowledge transfer in the crafted biased settings, where other
related methods bring very limited benefit. The reasons can be
attributed to the following two aspects. On the one hand, the
minority class instances can obtain more complementary infor-
mation from the majority class instances to boost the generation
of new instances by partitioning the data space with uncertainty
scores. On the other hand, the causal perception in a stratified
manner facilitates the capture of imbalanced distribution knowl-
edge and is more stable for imbalanced datasets.

In addition, we conduct experiments to analyze the impact of
candidate pool size on the model performance. In fact, the opti-
mal candidate pool is determined based on the cycle-consistent
minimax optimization. We aim to investigate the impact of
candidate pool size on performance by deleting or adding sam-
ples during experiments. Then, the size of the candidate pool
is measured by the number of samples in the candidate pool.
Specifically, based on the optimal candidate pool, we reduce
the size of the candidate pool by randomly deleting samples,
and expand the size of the candidate pool by adding unselected
remaining samples from the original and synthetic datasets. Ex-
periments are carried out on CIFAR→STL and STL→CIFAR
tasks, and the results are shown in Fig. 6. From the experimental
results, it can be observed that the optimal candidate pool with
an appropriate size through cycle-consistent minimax optimiza-
tion can force the model to achieve superior performance. The
reason for the degradation of model performance is that the
small-size candidate pools generally lack diversity, while large-
size candidate pools with many unscreened samples may lead
to poor data quality.

Results on the Colored PACS. These color backgrounds
make this task more complex and biased, and therefore more
difficult than the previous task. As shown in Table V, our

TABLE V
CLASSIFICATION ACCURACY (%) ON COLORED PACS
DATASET COMPARISON WITH THE STATE-OF-THE-ART

METHODS. THE P, A, C AND S IN THE FIRST ROW

RESPECTIVELY INDICATE THE TARGET DOMAIN WITH THE

REMAINING THREE DOMAINS USED AS THE SOURCE

DOMAINS. THE vals, valt AND valm DENOTE THREE

MODEL SELECTION STRATEGIES, NAMELY USING SOURCE

DATA, TARGET DATA AND MIXED SOURCE-TARGET DATA

AS VALIDATION SETS TO OBTAIN EXPERIMENTAL RESULTS

Methods P A C S Average
MLDG 91.4 75.3 74.6 71.8 78.3
UAN 92.3 76.9 75.1 72.3 79.2
IRM 91.8 76.7 73.9 73.5 79.0
CSD 93.7 78.4 77.5 76.1 81.4

FedSR 92.0 78.8 76.2 75.7 80.7
TDR 94.2 77.5 76.4 75.3 80.9
REx 93.1 77.0 75.8 74.6 80.1

SCDA (vals) 94.6 79.2 77.1 76.4 81.8
SCDA (valt) 95.8 81.3 78.6 78.3 83.5
SCDA (valm) 95.3 82.9 80.3 77.9 84.1

Fig. 7. Comparison of state-of-the-art methods on the Colored PACS dataset
under the condition of double source and target domains.

proposed SCDA on the Colored PACS dataset is competitive
to state-of-the-art results averaged over all domains. The SCDA
(vals) shows the highest performance across different domains,
except compared to CSD in the “C” domain. In addition, the
average accuracy of CSD is similar to that of SCDA in this
article. The reason is that the common component and the
domain specific component are jointly learnt in a decomposed
way, which may promote positive transfer and combat negative
transfer to some extent. We can also observe that the mod-
els gradually perform better when the test or mixed domain
validation is used as a model selection strategy. Therefore, in
some scenarios where a little test domain data is available,
the model selection strategy can be considered as an appro-
priate alternative solution for the improvement of knowledge
transfer performance.

To further analyze the performances of the proposed SCDA,
we conduct a series of experiments on the Colored PACS dataset
under the condition of double source and target domains. As
can be seen from Fig. 7, the performance of MLDG is rel-
atively poor, so the model agnostic training strategy is sus-
ceptible to the interference-active shifts. We can also observe
that our SCDA is superior to other state-of-the-art approaches
in each case, which further demonstrates the effectiveness of
our proposed method in the Colored PACS dataset. Moreover,
Fig. 7(b) exhibits better performance than Fig. 7(a). The reason
may be that the interference-free shift of “P” domain is small



JIA et al.: SECURE AND ROBUST KNOWLEDGE TRANSFER FRAMEWORK VIA SCDA IN INTELLIGENT COLLABORATIVE SERVICES 69

TABLE VI
RESULTS OF ABLATION EXPERIMENTS ON THREE REPRESENTATIVE

TASKS BY REMOVING ONE COMPONENT WHILE FIXING THE OTHERS

Method Task1 Task2 Task3 Average
w/o uncertainty quantification 57.1 62.7 69.4 63.1

w/o causal perception 63.7 64.8 69.3 65.9
w/o influence filter 62.8 63.0 73.5 66.4

w/o diversity selection 65.2 67.4 74.6 69.1
w/o hybrid optimization 59.4 62.3 70.3 64.0

SCDA 68.5 71.6 79.2 73.1

and hence easy to detect, while the “S” domain is relatively dif-
ficult to detect due to the large domain bias between the seen and
unseen classes.

E. Ablation Studies

To further understand the effect of each component in our
model, we conduct a set of ablation experiments on Rotated
MNIST, CIFAR-10 & STL-10, and Colored PACS datasets.
Due to space limitation, Table VI shows the results of ablation
analysis for three representative tasks (Task1: 30° & 60° →0°
& 90°, Task2: Im-S→Im-C, and Task3: P & C & S→A). In
our experiments, the impact of different components can be
estimated by controlling major constraint terms, including the
effect of without the uncertainty partitioning (“w/o uncertainty
quantification”), the effect of without the causality inference
(“w/o causal perception”), without the influence minimization
(“w/o influence filter”), without the diversity maximization
(“w/o diversity selection”), and without the minimax optimiza-
tion (“w/o hybrid optimization”).

From Table VI, we can make the following observa-
tions. First, when removing the uncertainty partitioning (“w/o
uncertainty quantification”), the classification accuracies dra-
matically degrade due to the lack of goal orientation, which
demonstrates the effectiveness of data stratification based on
density ratio estimation for secure and robust knowledge trans-
fer. Second, our scheme achieves 4.8%, 6.8% and 9.9% gains
over “w/o causal perception” on the 30° & 60° →0° & 90°, Im-
S→Im-C and P & C & S→A tasks, respectively. This clearly
validates that both the basic features and state features should
be causally inferred to enhance the performance and alleviate
the interference-free and interference-active shifts. Third, our
scheme outperforms “w/o influence filter” and “w/o diversity
selection”, showing that it is beneficial to narrow distribu-
tion discrepancy across domains in the candidate pool. Finally,
“w/o hybrid optimization” works significantly worse than our
scheme, which clearly implies the superiority of mining the
complementary information through the influence minimization
and the diversity maximization.

F. Causality Analysis

To quantitatively analyze the effectiveness of causal rea-
soning, the effects of interference-free and interference-active
shifts are quantified by normalization of the predicted results.
We first report the classification results of “w/o causal percep-
tion” and our SCDA for each class on the Im-S→Im-C task
in Table VII, and then illustrate the effects of the two shifts
in Fig. 7.

Fig. 8. Quantified effects of the interference-free and interference-active
shifts on the Im-S→Im-C task. The purple and blue bars represent the
effects of the interference-free and interference-active shifts, respectively.
The horizontal axis denotes different categories and the vertical axis is the
quantified value of the effect.

From the results in Table VII, it is interesting to find that
the proposed SCDA outperforms “w/o causal perception” not
only in animal classes (i.e., 5.4% gains on “bird” and 8.9%
gains on “cat”) but also on vehicle classes (i.e., 7.5% gains on
“airplane” and 6.4% gains on “car”). The promising results in-
dicate the effectiveness of stratified causality perception on ex-
ploring the transferable causal knowledge for secure and robust
knowledge transfer.

In Fig. 8, the higher quantified effect of the interference-free
shift (purple bars) means that the interference-free shift is more
significant to secure and robust generalization, and the larger
quantified effect of the interference-active shift (blue bars)
indicates that the interference-active shift is more crucial. From
the results, we find that the effects inferred by causal perception
accurately reflect the importance of different shifts. For
example, “horse” has a higher quantified effect of the
interference-free shift than “cat” since “horse” contains more
basic representations than “cat” in this imbalanced task, and
hence the interference-free shift in “horse” deserves much
more attention than that in “cat”. This shows that stratified
causal perception can infer the contribution or influence of the
basic and state features to mitigate the interference-free and
interference-active shifts for the improvement of adaptation
and generalization through adaptive distribution adjustment.

G. Feature Visualization

To further illustrate the effectiveness of the proposed SCDA
scheme, we visualize the data distribution of original features
(“Original”), the learned features without uncertainty parti-
tioning (“w/o uncertainty quantification”), the learned features
without causality inference (“w/o causal perception”) and the
learned features with our scheme (“SCDA”) in the same fea-
ture space on the A→P task, as presented in Fig. 9(a)–(d),
respectively. For clarity, we visualize two domains (different
shapes) and seven classes (different colors) by the t-distributed
stochastic neighbor embedding (t-SNE).



70 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 1, JANUARY 2024

TABLE VII
CLASSIFICATION ACCURACY (%) OF ‘‘W/O CAUSAL PERCEPTION’’ AND OUR SCDA FOR EACH CLASS ON THE Im-S→Im-C TASK UNDER INTELLIGENT

COLLABORATIVE SCENARIOS

Method Bird Cat Deer Dog Horse Airplane Car Ship Truck Average
w/o causal perception 61.6 59.5 61.6 62.7 49.6 73.2 77.1 67.2 70.9 64.8

SCDA 67.0 68.4 63.9 75.6 56.3 80.7 83.5 70.6 78.4 71.6

Fig. 9. Feature visualization on the A→P task. The circles and triangles denote the ID features and OOD features, respectively.

We draw several interesting observations and insights arising
from Fig. 9. First, there is a large distribution shift between
the “A” and “P” domains as shown in Fig. 9(a), and even
some available and testing features of the same class belong to
different clusters. Second, as presented in Fig. 9(b) and 9(c), our
scheme generalizes the learned in-distribution (ID) features to
the out-of-distribution (OOD) features better than “w/o uncer-
tainty quantification” and “w/o causal perception” owing to the
realization of uncertainty stratification and causality inference.
Finally, in Fig. 9(d), the learned ID features in the diverse
classes are aligned and centralized with the OOD features,
clearly showing that our scheme can successfully bridge the
gap between available and testing samples to guarantee the
security and robustness of knowledge transfer in intelligent
collaborative services.

VII. CONCLUSION

In this article, we present a secure and robust knowl-
edge transfer framework for intelligent collaborative services
through stratified-causality distribution adjustment. The fol-
lowing conclusions can be drawn from this research work:
1) an innovative uncertainty quantification via density ratio
estimation can mine the distribution rules of data points during
the preprocessing, which provides a basis for determining the
distribution areas that need to be focused on; 2) the causal
perception in a stratified manner is proposed to infer the effects
of interference-free and interference-active shifts, which suffi-
ciently ensures that the synthetic causality-guided features can
adaptively bridge gaps in data distribution to promote the secu-
rity and robustness of knowledge transfer under intelligent col-
laborative scenarios; 3) this article brings a new perspective that
the cycle-consistent minimax optimization can be exploited to
further alleviate the false alignment across different domains via
minimizing the influence and maximizing the diversity; and 4)
extensive experimental results show that our proposed scheme
is more appropriate for practical and complicated knowledge
transfer tasks through goal-directed knowledge delivery, and
can simultaneously mitigate the threat of negative transfer under

the condition of severe distribution shifts. Moreover, data pri-
vacy leakage and model copyright infringement can be avoided
by adaptive distribution adjustment. In the near future, we are
planning to investigate the uncertainty quantification criterion
that can accurately assist to explore inherent causal relation-
ships for the implementation of flexible and efficient knowledge
transfer in device-edge-cloud collaborative services.
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