
KINGFISHER: Unveiling Insecurely Used
Credentials in IoT-to-Mobile Communications

Yiwei Zhang
Shanghai Jiao Tong University

yyyyyyw@sjtu.edu.cn

Siqi Ma
The University of New South Wales

siqi.ma@adfa.edu.au

Juanru Li
Shanghai Jiao Tong University

mail@lijuanru.com

Dawu Gu
Shanghai Jiao Tong University

dwgu@sjtu.edu.cn

Elisa Bertino
Purdue University

bertino@purdue.edu

Abstract—Today users can access and/or control their IoT
devices using mobile apps. Such interactions often rely on IoT-
to-Mobile communication that supports direct data exchanges
between IoT devices and smartphones. To guarantee mutual
authentication and encrypted data transmission in IoT-to-Mobile
communications while keeping lightweight implementation, IoT
devices and smartphones often share credentials in advance
with the help of a cloud server. Since these credentials impact
communication security, in this paper we seek to understand
how such sensitive materials are implemented. We design a set
of analysis techniques and implement them in KINGFISHER, an
analysis framework. KINGFISHER identifies shared credentials,
tracks their uses, and examines violations against nine security
properties that the implementation of credentials should satisfy.
With an evaluation of eight real-world IoT solutions with more
than 35 million deployed devices, KINGFISHER revealed that
all these solutions involve insecurely used credentials, and are
subject to privacy leakage or device hijacking.

Keywords-IoT-to-Mobile communication, Value-based Analysis,
Shared Credential, Companion App

I. INTRODUCTION

Today many Internet-of-Things (IoT) devices support mul-
tiple communication models. In addition to the connection
between an IoT device and its cloud backend (IoT cloud, a
cloud server maintained by either a vendor or a third-party
public cloud provider), many IoT devices are able to directly
communicate with smartphones via peer-to-peer, local network
based IoT-to-Mobile communication. Rather than utilizing the
IoT cloud as a portal to send data to the smartphone, an IoT de-
vice can leverage the local transmission capabilities to directly
communicate with the smartphone when they are connected
to the same LAN or PAN (Personal Area Network) [1]. Such
a local communication model not only allows end-users to
manage IoT devices via a companion app on smartphones
with minimal delays. It also allows IoT devices and their
associated smartphones to directly exchange privacy-sensitive
data, without having to transmit the data via unnecessary third
parties (e.g., the cloud server). Therefore, such a communi-
cation model reduces security risks arising from cloud-based
communications [2], [3], and enhances privacy and compliance
with privacy regulations [4]–[6].

Although an IoT-to-Mobile communication is only estab-
lished between two nearby devices, it still needs to guarantee a
secure mutual authentication between these devices and apply
strong cryptographic protection to secure the data transmission
as attacks are also possible within local networks (e.g., by
compromising devices in a Wi-Fi network via a proxy of
the remote attacker) [7], [8]. Despite those risks, security
and protection schemes for IoT-to-Mobile communication have
not been much investigated, as previous research has mostly
focused on the security of cloud-centric communication [2],
[3], [9]. To address the critical issue of establishing a secure
channel for IoT-to-Mobile communication, current commercial
solutions typically adopt a credential based security mech-
anism. Such a mechanism requires to first distribute some
credentials to both the IoT device and the smartphone (often
with the help of the cloud), and then utilizes these shared
credentials for authentication and for establishing a secure
channel. There are two types of shared credential (SC) that
differ with respect to their use: authentication SC (ASC) used
for identity verification, and cryptographic SC (CSC) used
for communication encryption. Unlike pre-shared credentials
installed into devices by manufacturers, SCs are often dynami-
cally generated and distributed only when an IoT device needs
to bind to a smartphone.

SCs are critical security elements for IoT-to-Mobile commu-
nication, but our observation is that the use of SCs in IoT-to-
Mobile communication is very much ad hoc. They are usually
poorly protected and insecurely used. In addition to directly
attacking the communications between the IoT device and the
smartphone, an attacker may also aim at obtaining the used
SCs by either compromising the parties using and storing the
SCs, or exploiting the weaknesses of the IoT-cloud assisted
SC generation and distribution. However, to the best of our
knowledge, no security standard exists to guide the secure use
and implementation of SCs. Also, tools designed to analyze
the use and implementation of credentials in mobile apps, such
as CredMiner [10] and iCredFinder [11], mainly focus on hard-
coded credentials, whereas tools such as AuthScope [12] and
LeakScope [13] focus on to app-to-cloud communications and
do not cover IoT-to-Mobile communication.

To handle the specific scenario of IoT-to-Mobile communi-
cation and inspect the security of SCs, we apply a two-fold ap-
proach: (i) We establish nine security properties that securely
used SCs must/should satisfy; (ii) We design and implement
KINGFISHER, an analysis framework to automatically detect
violations against these properties.

KINGFISHER analyzes security across the multi-party in-
teractions (among IoT device, smartphone, and cloud) re-
quired for the management of SCs to check whether they
are securely generated, distributed, used, protected and re-
voked. KINGFISHER integrates several analysis techniques
to identify SCs in use and examine their security posture.
It adopts a keywords-guided function instrumentation and
network clustering to first collect SC-related messages in IoT-
to-Mobile communication, and employs a value-based analysis
to identify SCs and track the functions that operate on them in
(Android) companion apps. More importantly, KINGFISHER
extends traditional analysis techniques that check credentials
only in smartphone-to-IoT traffic or only in smartphone-to-
cloud network traffic. By simultaneously considering both
those two types of traffic and tracking credentials across
them, KINGFISHER can better understand the SC distribution
process across the IoT device, the smartphone, and the cloud.

To evaluate our approach and investigate how insecurely
used SCs affect the IoT security, we used KINGFISHER to
analyze eight popular IoT solutions with more than 35 million
deployed devices. KINGFISHER successfully identified SC-
related functions and messages for all eight solutions despite
their implementation diversity. After pinpointing the SCs,
KINGFISHER inspected their use and found that none of those
solutions securely uses SCs; each of them violated at least four
security properties, with the worst case solution only satisfying
two out of nine properties. We provide the KINGFISHER
details, instructions of our experiments, and the feedback of
IoT vendors at https://kingfisher.code-analysis.org.

II. THREATS AGAINST SHARED CREDENTIALS

To systematically study the security threats of SCs, we
need to first understand how SCs are managed in IoT-to-
Mobile communication. Figure 1 shows the lifetime of SCs.
Typically, the lifetime of SC involves three phases (device
binding, data transmission, and unbinding) of IoT-to-Mobile
communication, and includes two types of SCs based on the
two main purposes for using secrets, authentication SC (ASC)
and cryptographic SC (CSC). As first step, the smartphone
and the IoT device need to authenticate the identity of each
other. In this phase an IoT cloud (maintained by the IoT device
vendor) often acts as a reliable authority. With the help of the
IoT cloud, the smartphone and the IoT device are bound to
each other and both obtain SCs, to be used in the subsequent
data transmissions. Note that the SCs are either generated
by the IoT cloud and separately sent to both the IoT device
and the smartphone, or directly negotiated between the IoT
device and the smartphone. Next, each time data is transferred,
the two communicating parties utilize the ASC to prove their
identities and the CSC to protect the data transmission. Note

Send Auth Info.

Return SCs

Device Binding

User/Device Messages

Data Transmission

Communication Revocation

Unbinding

Cloud-Centric Scheme Device-Centric Scheme Mutual Negotiation

Smartphone with
Companion App IoT Device Cloud Server

User Impersonation

SC Leakage

Device Hijacking

Vulnerable Third-parties

Send SCs to Cloud

Device Reset

……

Device Binding

Return SCs
Reusable SCs

Fig. 1. Typical IoT-to-Mobile Communication Process and the Threat Model

that actually the ASC could be used to derive a session token
used for authentication and the CSC used to derive session
keys to encrypt and sign the data. Finally, if the smartphone
and the IoT device need to revoke the binding, an unbinding
request, usually initiated by the smartphone, is sent to the IoT
device and the IoT cloud, so that they delete all SCs (and thus
invalidate the binding).

SCs play a major role in securing IoT-to-Mobile commu-
nication. The ASC proves that only the bound IoT device
and smartphone are authorized to communicate; the CSC
helps implement cryptographic protection for transmitted data.
However, the use of SCs in IoT-to-Mobile communication
is error-prone. Unlike other types of credentials (e.g., web
tokens) that are regulated by security standards [14]–[18],
the implementation of SCs in IoT-to-Mobile communication
lacks guidelines. Also existing security standards for creden-
tials of the client-server model are not directly applicable to
implement SCs. Accordingly, in this paper we adopt the threat
model shown in Figure 1. We assume that the IoT device and
the smartphone OS are both benign. However, attackers may
install malicious apps on the smartphone, and these apps can
access the data storage containing SCs [19]–[21]. We focus
the threat model on the IoT-to-Mobile communication under
Wi-Fi networks only. There are more powerful adversaries that
can attack other local networks, such as Bluetooth [22], [23]
and Zigbee [24], but they require specialized resources not
commonly available. Also, we assume that the Wi-Fi network
is an untrusted network, that is, the attacker can connect to the
Wi-Fi network and perform passive eavesdropping or active
message forgery attacks.

Under the assumed threat model, the attacker can conduct
several attacks. He can forge user information as a legitimate

smartphone to cheat the IoT device (User Impersonation), or
attack the (insecure) SC distribution (e.g., by utilizing the
hard-coded key embedded in the companion app and device
firmware) and obtain the SCs (SC Leakage). Moreover, the
attacker can impersonate the cloud server (Vulnerable Third-
parties) to distribute fake SCs or obtain the reported SCs. Once
an attacker obtains or controls the SC, he can directly hijack
the network communication of the smartphone once he is able
to decrypt the traffic, and forge user commands to control the
IoT device (Device Hijacking). Last, the attacker can replay the
SCs not revoked after the unbinding operations to compromise
the IoT-to-Mobile communication (Reusable SCs).

III. SECURITY PROPERTIES OF SHARED CREDENTIALS

We found NO existing guidelines for regulating SC im-
plementations. In response, we propose a number of critical
security properties that a SC MUST1 or SHOULD2 comply
with. To make sure that we identify a set of comprehensive
security properties, we have adopted a two-fold process:

1) We divide the life cycle of SCs into five stages: genera-
tion, distribution, validation, protection, and revoca-
tion. Then we identify the relevant security properties
for each stage.

2) We refer to existing credential design principles de-
veloped for Client-Server model and OAuth model, as
well as key management standards, according to the
guidelines given by related official documents [14]–[18],
[25], [26].

Based on our design process, we have identified nine
security properties that we believe are sufficient for a secure
implementation and use of SCs.
Property 1 – Randomness. A SC MUST prevent brute force
and guessing attacks. To achieve this property, a best practice
is to generate SCs with a part constructed from a strong crypto-
graphic pseudo-random number generator (PRNG). According
to security considerations for OAuth 2.0 in RFC6749 [15] and
encryption key in IPsec [26], the probability of an attacker
guessing the generated SCs must be less than or equal to 2−128

and should be less than or equal to 2−160. In view of both
usability and security considerations, we conclude that a SC
should contain at least a 128-bit random number.
Property 2 – Secure Distribution Channel. The distribution
of SCs MUST rely on a secure channel, which fulfils strong
authentication, and guarantees confidentiality and integrity.
Authentication requires mutual identity verification between
the SC distributor and the SC receiver to prevent man-in-
the-middle (MITM) attacks or potentially malicious clients.
Confidentiality means that the SCs must not be distributed in
the clear, and integrity ensures that SCs cannot be modified
during transmission. To satisfy those three security require-
ments, the RFC6749 [15], RFC6750 [27] and RFC7519 [16] as

1MUST means that the property is an absolute requirement to implement
a secure SC.

2SHOULD means that some properties may be ignored in specific cir-
cumstances. But it is still necessary to understand the full implications and
carefully weight them.

well as NIST key management [25] documents, which regulate
OAuth 2.0 authorization framework, JSON web token and
encryption key implementations, all recommend to deploy the
Transport Layer Security protocol [28] (TLSv1.2) with multi-
authentication to protect SC transmission.
Property 3 – End-to-end SC Sharing. A SC MUST be shared
only among the authorized communicating parties. Referring
to the security considerations of OAuth 2.0 in RFC6749 and
HTTP State Management Mechanism in RFC6265 [17], this
property requires that a SC should be only shared between the
IoT device, its companion app and the trusted cloud server.
Property 4 – Different ASC and CSC. An IoT-to-Mobile
communication MUST implement both ASC for authenti-
cation and CSC for communication protection and a given
SC SHOULD be used only for identity authentication be-
tween the communicating parties or only for data encryption.
Specifically, both ASC and CSC are necessary and the ASC
and CSC used in an IoT-to-Mobile communication should be
different, according to RFC6749 and POLP (Principle of Least
Privilege) [29]. For example, if the ASC and CSC are same, an
attacker would be able to not only decrypt the encrypted traffic,
but also impersonate the smartphone (installing a companion
app with login user accounts) to send fake messages once the
attacker obtains one of the SCs (i.e., ASC or CSC).
Property 5 – Oblivious Validation. Feedback from the SC
validation SHOULD not leak any information about the SC
correctness. This property means that the responses should
not contain any information that can reflect the correctness
of the SC (see the OWASP cheat sheet [18]). Like to the
padding oracle attacks [30], incorrectly implemented response
messages can reveal meaningful information about the target
and can be used for SC enumeration or guessing. Thus, when
an invalid SC is detected, a generic response, rather than a
message that contains error details, should be returned.
Property 6 – Brute Force Attack Resistance. The validation
SHOULD only allow limited attempts with incorrect SCs. This
property requires that the validation step maintains a counter
for invalid SCs, which limits the attempts to a reasonable
range to prevent the brute-force attack. The OWASP cheatsheet
recommends that the counter be associated with the SC itself,
rather than the source IP address. A best practice is to use a
threshold of no more than 20 SC attempts from one source.
Property 7 – Encrypted-then-stored SC. A SC MUST be
first encrypted, then stored in non-volatile storage medium
such as flash memory (especially on smartphones), to prevent
an attacker from obtaining the SC even when the devices are
compromised. Past research [31] has shown that once the data
is written to mediums such as solid state drives, it is not easy
to erase it securely. Therefore if SCs are to be stored, they
should be stored in ciphertext form. OWASP Cryptographic
Storage cheatsheet suggests to protect SCs using either AES
with at least 128 bits key and a secure mode, or ECC with
Curve25519 or RSA with at least 2048 bits key.
Property 8 – Short-term SC. A SC SHOULD not be used for
a long time. This property requires that the communication sets
a SC expiration timeout to reduce the attack window. Referring

to the RFC5280 [32], the X.509 PKI Certificate standard
document and key management guide [33], used SCs should be
immediately discarded after a session is terminated; OWASP
cheatsheet [18] even suggests that for long time sessions, the
SCs should be set to expire and renewed in eight hours to
balance usability and security.
Property 9 – Revocable SC. A SC SHOULD be revoked
actively when it is leaked or expired. This property requires
that a secure SC revocation mechanism should be provided.
According to OWASP JSON Web Token cheatsheet [18] and
NIST key management [25], before using or validating a SC,
the communication parties should check whether the SC is
revoked. If a SC is revoked, it should fail the verification and
not be used for later communications.

IV. DETECTING INSECURELY USED SHARED
CREDENTIALS

KINGFISHER is based on two analyses: i) an analysis of
both app code and network traffic to collect functions and
packets that are related to SCs; ii) a value-based analysis to
detect the SCs used for IoT-to-Mobile communication and
label the corresponding functions containing these SCs.

Concerning the first analysis, KINGFISHER explores all
the potential information related to SCs. We observed that
IoT vendors commonly customize their proprietary protocols
to construct IoT-to-Mobile communication without disclos-
ing specifications and protocol formats. Therefore identifying
functions and network traffic related to SCs is challenging.
Existing approaches for the analysis of protocol formats and
types [34]–[36] are unable to analyze IoT-to-Mobile com-
munications. Some of them can only handle protocols with
plain-text messages, while others cannot pinpoint the SC-
related fields since they only rely on network traffic analysis.
In addition, a simple static code analysis cannot identify the
dynamically generated SCs. Hence, KINGFISHER conducts a
hybrid analysis of both functions and packets so to gather
comprehensive information for the subsequent analysis.

The main challenge for the second analysis, aiming to detect
the SCs used for IoT-to-Mobile communication, is that since
the SCs are generated by the IoT device or the IoT cloud, it
is difficult to track the data flow of each SC. Unlike creden-
tials generated by the apps, the SCs are typically processed
through multiprocessing (e.g., Binder IPC mechanism [37])
and multithreading, which involve both Java code and native
code. Therefore, the existing analysis techniques [38], [39]
cannot track the data flow of the SC precisely because they
cannot analyze code with portions written in multiple lan-
guages simultaneously. KINGFISHER thus uses a value-based
comparison, which is a code-independent method at the data
flow level, to detect the SCs and the functions that process the
SCs, without requiring information about the standard/format
followed for encoding the SCs.

KINGFISHER executes four steps to assess the security of
SCs (see the workflow in Figure 2). It first analyzes the app
code to label functions correlated to SCs (Function Interface
Identification). It then combines app dynamic instrumentation

with network traffic analysis to collect function runtime values
and network packets that are potentially correlated to SCs
(Message Collection). Given the collected functions and net-
work packets, KINGFISHER tracks the data flow of each SC
in multiple modules/apps (Value-based Analysis) and pinpoints
the flawed implementations (Security Violation Detection).
A. Function Interface Identification

To obtain the SC from a companion app, KINGFISHER
identifies SC-related candidates that are potentially di-
rectly/indirectly data dependent on the SC. As the SC can
be created by the cloud or negotiated locally between the IoT
device and the smartphone, KINGFISHER explores the dynam-
ically loaded functions and further identifies the candidates
based on the usage of SCs.

In particular, KINGFISHER first extracts all functions
that are loaded during the app execution through
ClassLoaders [40]. Then it conducts a keyword-
based search to retrieve SC-related candidates. For keyword
matching, we manually built a reference set containing a list
of function names that are commonly used to name SC-related
function. In regard to the usage of SCs, they are generally
utilized in user authentication and authorization, cryptographic
algorithms, and data protection. Thus, we manually explored
the SC-related functions from the top 100 IoT app projects
and sample codes on Github and StackOverflow to extract the
relevant keywords (e.g., “encrypt”, “build”, “token”). Given a
reference set, KINGFISHER compares the dynamically loaded
function with all the keywords in the set. A function is
labeled as a SC-related candidate if any keyword is included
as a subword of the function name. KINGFISHER includes
the function prototypes of the SC-related candidates (i.e.,
function name, parameter types, return type) in a SC Function
Candidate List.

B. Message Collection

KINGFISHER further dynamically collects the values pass-
ing through the corresponding SC-related candidate functions
and conducts network traffic analysis.
Function Value Collection. To distinguish SCs, we construct
an instrumentation component based on Frida [41] to track the
function parameter values and return values for each candidate
in the SC function candidate list.

Unlike common functions that are usually written in high-
level Java code, SC transmission through network communica-
tion involves functions in both Java code and native code, that
is, the SC-related candidates might exist in either Java code or
native code. KINGFISHER processes the function candidates in
different code levels separately because the programming logic
and instrumentation interfaces of Java code and native code
are inconsistent. To be more specific, KINGFISHER directly
hooks each SC-related candidate in Java code to obtain all its
parameter values and return values. For native code, KING-
FISHER classifies the parameters and return variables of each
SC-related function into “pointer” and “non-pointer” variables.
For each pointer variable, KINGFISHER obtains the variable
value by extracting the pointed address and further visits the

Java Code

Reference set

API Filtering

Function Interface Identification Message Collection

Function Value Collection

Traffic Clustering

IoT-to-Mobile Communication

Native Code

SC Function
Candidate List

Function
Information List

IoT-to-Mobile
Communication Packet List

Value-based Analysis

Coarse Candidate Selection

P1P1

Security Violation Detection

P2P2 P3P3 P4P4 P5P5

P6P6 P7P7 P8P8 P9P9

SCs
SC-related
Functions

Fine-grained SC Recognition

IoT Android
Companion Apps

Fig. 2. The workflow of KINGFISHER analysis framework

corresponding memory block of the address, which ends with
a sequence of ‘00’ to collect the value stored in the memory
block3. As the parameter variables might be handled within
the function, their values might be modified. KINGFISHER
thus records the initial and final values of each variable.
Alternatively, KINGFISHER directly records the runtime values
of non-pointer variables. All the information about the variable
values is stored in a function information list, aligned with the
SC-related candidates.
Traffic Clustering. KINGFISHER analyzes network traffic to
identify IoT-to-Mobile communication packets. By executing
tcpdump [42], KINGFISHER captures all network packets
transmitted by the smartphone. It then relies on the IP
addresses of both the IoT device and the smartphone to
distinguish whether a packet is transmitted for IoT-to-Mobile
communication, that is, a packet is considered as an IoT-to-
Mobile communication packet if it contains the IP addresses
of the IoT device and the smartphone. In addition to IoT-
to-Mobile communication packets involving SCs, there are
IoT-to-Mobile communication packets used for other purposes,
such as heartbeat packets.

Accordingly, KINGFISHER clusters the similar packets into
the same group. Given the IoT-to-Mobile communication
packets, KINGFISHER utilizes a traffic clustering-based Se-
quence Alignment [43] to cluster the similar network packets
into a group. Specifically, KINGFISHER pairwise compares
all the IoT-to-Mobile communication packets and computes
a similarity score of each packet pair by using a message
similarity computation algorithm — Needleman-Wunsch algo-
rithms [44]. According to the similarity score, it then merges
the most similar packets by recursively selecting the pair with
the highest similarity score and executes UPGMA clustering
algorithm [45] to cluster the similar pairs into the same group4.
Since the packets in the same group are similar, all packets
in the same group will be regarded as containing SCs if any
packet is identified as transmitting a SC. Thus, KINGFISHER
randomly selects one packet from each group to construct an
IoT-to-Mobile communication packet list for the subsequent
value analysis.

3It is important to note that if there is another memory address stored in
the memory block, KINGFISHER continues to visit the memory block of the
new memory address. Such an operation is executed iteratively until a valid
value is read from the memory address.

4We set the dissimilarity index to 0.54 to balance clustering accuracy and
efficiency.

C. Value-based Analysis.

Taking as input the function information list and the IoT-
to-Mobile communication packet list, KINGFISHER identifies
the SCs through value comparison.
Coarse Candidate Selection. As a large amount of candidates
and network packets are collected, KINGFISHER first filters
out the irrelevant candidates. It compares the values stored
in the function information list (i.e., parameter values and
the return value) with the values of packets in the IoT-to-
Mobile communication packet list. KINGFISHER considers a
candidate as irrelevant if the function values do not include any
of the packet values. The rest of the candidates are labeled
as initial functions that are directly data dependent on the
involved SC.

In addition, as the return value of each initial function might
also be manipulated by the other functions (i.e., indirectly
data dependent on the SC), KINGFISHER tracks all these
functions to explore the complete SC data flow. Specifically,
it compares each return value with the parameter values of
the other candidates and labels each as a related function if
any of its parameter values matches with the return value.
KINGFISHER identifies the related functions iteratively until
no related function is found.
Fine-grained SC Recognition. Based on the related functions
and their values, KINGFISHER next recognizes the used SCs,
i.e., ASC and CSC. Through our manual observation, we
found that most ASCs are encoded in the format of JSON
or based on the format of JSON Web Token, and CSCs are
commonly taken as parameters of the cryptographic functions.
KINGFISHER further examines the SC values with reference to
such an observation. If a value contains a sequence of Base64
strings, KINGFISHER regards the value as an ASC. Otherwise,
when a value is in JSON format, KINGFISHER parses the
JSON string to extract the value from specific fields [46], [47],
which is labeled as an ASC. Alternatively, it labels a value as a
CSC if used as an encryption key of a cryptographic function.

As some cryptographic functions are customized, it is
difficult to locate the parameters of their encryption keys.
To address such an issue, we manually abstract the common
characteristics of the encryption keys [25], namely: (1) the key
length is a multiple of 16; (2) the key length does not exceed
64 bytes5. KINGFISHER then analyzes input/return values of

5A common CSC used for encryption key is no more than 32 bytes and
considering the hex value of the key, we set the maximum length is 64 bytes.

the customized cryptographic functions with respect to such
characteristics. If a value satisfies those two characteristics,
KINGFISHER regards the value as a CSC. After labeling all the
SCs, KINGFISHER further labels the corresponding function
candidates as a SC-related function.

D. Security Violation Detection

Having the identified SCs and SC-related functions, KING-
FISHER assesses whether the security properties listed in
Section III are violated from the perspectives of SC generation,
distribution, validation, protection and revocation.
Detecting Insecurely Generated SCs. To check whether a SC
is securely generated, KINGFISHER examines the SC length
and its randomness. In particular, KINGFISHER labels the SCs
whose length is less than 16 bytes as vulnerable (i.e., violating
P1). With respect to randomness, KINGFISHER triggers the SC
generation procedure for n times by resetting the device, re-
provisioning network, and reconnecting the device to collect
a sequence of SCs. We set n = 10 in our experiment to
make sure that the device itself and the remote server of the
manufacturer would not be affected by any harmful impacts,
such as request explosion to the server. The SC sequence
is evaluated with respect to repetition and consistency [48],
where repetition refers to the periodical appearance of a
subsequence and consistency refers to the use of constant
values. If a subsequence in the SC sequence is generated peri-
odically, KINGFISHER considers such a sequence as violating
P1. Beside, a sequence using a constant value multiple times
(i.e., over 3 times in our experiment) is considered vulnerable,
violating P16.
Detecting Insecurely Distributed SCs. Since the procedure
of SC distribution should always be protected, KINGFISHER
checks the traffic to detect whether such distribution is pro-
tected by TLSv1.2 [28] or multi-factor authentication. If this
not the case, KINGFISHER labels the distribution procedure as
vulnerable, violating P2. KINGFISHER then checks whether
the SC is disclosed to any untrusted third parties. By us-
ing Burp Suite [49], KINGFISHER parses the communication
packet transmitted between the cloud and the smartphone. We
consider a SC as secure if it exists in the packet transferred
from the cloud to the smartphone, which is a cloud-centric
distribution. On the contrary, a SC is vulnerable if a smart-
phone transmits it to the cloud without having received it in
advance, violating P3.
Detecting Insecurely Validated SCs. A secure IoT-to-Mobile
communication should include a SC for authentication and
a SC for cryptography purposes. Thus a communication not
including any SC or using the same SC for multiple pur-
poses is insecure, violating P4. To detect such a violation,
KINGFISHER first checks whether the ASC and CSC are
identified from IoT-to-Mobile communication. The lack of
either of them is considered insecure. When both ASC and
CSC are identified, KINGFISHER compares both value. The
SC is insecure if both values are the same.

6To avoid false positives, we assume that the periodical subsequence and
constant value longer than 4 bytes are the same.

To examine whether validation error messages leak informa-
tion, KINGFISHER modifies the SC value and other data fields
(e.g., device identity information) to verify the error responses.
First, KINGFISHER generates a pseudorandom character and
appends the character to the end of the SC value to modify its
length, or replaces the last character of the SC to modify its
value only. Then, it utilizes the instrumenting component to
hook and replace the parameter values by the incorrect values
to trigger IoT-to-Mobile communication. After receiving the
responses from the IoT device, KINGFISHER monitors the
device responses. If the responses for both incorrect values
are different, the IoT-to-Mobile communication is considered
as insecure by violating P5.

To further examine the protection scheme against DDoS
and brute force attacks and avoid sending too many requests
to the cloud server, KINGFISHER generates 20 pseudorandom
characters to create 20 incorrect values by appending them at
the end of original value. If all the response messages are the
same, the SC implementation is considered to violate P6.
Detecting Insecurely Protected SCs. KINGFISHER performs
string match by comparing the SC with files stored at the app
local internal storage (i.e., ‘/data/data/xxx’) and the external
storage (i.e., ‘/sdcard/xxx’). If there is any match, a vulnera-
bility is identified (i.e., a violation of P7).
Detecting Insecurely Revoked SCs. We assume that a se-
cure SC can only remain constant up to eight hours. Thus,
KINGFISHER reuses the SC after eight hours. If it can set
up IoT-to-Mobile communication successfully, then the SC
implementation is considered as violating P8.

After SC revocation, the previous SC needs to be disabled.
When the SC is revoked or a new SC is distributed, KING-
FISHER sends a message by using the previous SC. The SC
revocation security property (P9) is violated, if the device
correctly responds to the message.

E. Running Example

We use Tuya [50] as an example to demonstrate the
workflow of KINGFISHER. Tuya is a global vendor that
provides various connectivity solutions for IoT devices in
different scenarios. Figure 3 shows the main code imple-
menting IoT-to-Mobile communication in Tuya app and how
KINGFISHER works on this code. The Tuya app first utilizes
the CSC localtoken to encrypt the plain data through func-
tion encryptRequestWithLocalKey, and then prepares
message data by combining the encrypted data and other in-
formation based on its customized protocol format via function
buildRequest. Afterwards, a cross-process communication
flow across functions transact and onTransact is im-
plemented to transfer the encrypted data from the client-proxy
process to the service-stub process. In the service-stub process,
the received data is handled by both Java code and native code,
and is then sent by function buffevent_write in another
thread to the bound IoT device.

In order to detect security violations related to SCs,
KINGFISHER first identifies the functions potentially
related to SCs (e.g., encryptRequestWithLocalKey,

Client-Proxy Process Service-Stub Process
public void control(dbf info, com.tuya.smart.sdk.api.IResultCallback b)
{

...
String localtoken = info.getlocalKey();
...

 byte[] encrypt_data = encryptRequestWithLocalKey(localtoken, plain_data);
byte[] data = buildRequest(encrypt_data, timestamps, frametype, ...);
boolean v1 = this.TransferServiceInterface.controlByBinary(frametype, data);
...

}
public boolean controlByBinary(int frametype, byte[] data){

...
Parcel v1 = Parcel.obtain();
v1.writeByteArray(data);
this.mRemote.transact(7, v1, ...);
...

}

public void control(dbf info, com.tuya.smart.sdk.api.IResultCallback b)
{

...
String localtoken = info.getlocalKey();
...

 byte[] encrypt_data = encryptRequestWithLocalKey(localtoken, plain_data);
byte[] data = buildRequest(encrypt_data, timestamps, frametype, ...);
boolean v1 = this.TransferServiceInterface.controlByBinary(frametype, data);
...

}
public boolean controlByBinary(int frametype, byte[] data){

...
Parcel v1 = Parcel.obtain();
v1.writeByteArray(data);
this.mRemote.transact(7, v1, ...);
...

}
// libnetwork-android.so function in another thread
int bufferevent_write(int send_buffer);
// libnetwork-android.so function in another thread
int bufferevent_write(int send_buffer);

public boolean onTransact(int arg1, Parcel arg2, ...){
switch(arg1){
 ...
 case 7:
 boolean v4_2 = this.controlByBinary(arg2.readInt(),

arg2.createByteArray());
 ...
}

}
public boolean controlByBinary(int frame_type, byte[] data){

...
int ret = sendBytes2(data, data.length, frame_type);

}

Value-based Analysis Flow

IoT-to-Mobile Communication Packets

localtoken, plain_dataencryptRequestWithLocalKey

buildRequest

controlByBinary, sendBytes2

bufferevent_write

...

encrypt_data, timestamps, …, data

data

send_buffer

...

SC-related Candidates Function Values

encryptRequestWithLocalKey localtoken = 65cdxxxxxxxx079b

buildRequest, encryptRequestWithLocalKey encrypted_data = SSS

bufferevent_write send_buffer = aaa.bbb.SSS.ccc

sendBytes2, controlByBinary, buildRequest data = bbb.SSS

aaa.bbb.SSS.ccc

Message CollectionFunction Interface
Identification

Value-based Analysis

IoT-to-Mobile Communication Packets = aaa.bbb.SSS.ccc

aaa/bbb/ccc/SSS: Value Sequences KingFisher Work Flow

Fig. 3. A Running Example of Tuya IoT-to-Mobile communication

buildRequest, controlByBinary, sendBytes2
and bufferevent_write). It then records the
runtime values including function parameters (e.g.,
localtoken, data, send_buffer) and return values
(e.g., encrypted_data) and meanwhile, collects the SC-
related packets from network traffics. Having these messages,
KINGFISHER finally executes the value-based comparison
to track the SC data flow and check if there are property
violations.

V. EXPERIMENTAL RESULTS

In this section, we report our experiments on eight popular
IoT solutions that adopt IoT-to-Mobile communication and use
SCs.

A. Experiment Setup
Tested Devices. To assess SC security and thoroughly cover
different IoT-to-Mobile communication solutions, we carefully
selected the solutions to be analyzed. Specifically, we first
identified a set of mainstream IoT vendors and then selected
the vendors offering solutions based on device companion
apps. We then referred to device product descriptions, inquiries
with these vendors, and actual testings to check whether
devices could communicate locally with their companion apps.
Finally, we selected the products most widely used.

Totally, we assessed eight popular IoT-to-Mobile commu-
nication solutions, BroadLink [51], Haier [52], Horn [53],
Qihoo [54], Tuya [50], Xiaomi [55], Xiaoyi [56], and ZTE [57].
According to the sales data of e-commercial platforms, such
as Alibaba, Amazon, and JD.com, as of September 2021, the
total shipment number of these devices exceeded 35 million.
Furthermore, downloads of each companion app ranged from
2,461,900 (BroadLink) to 6,023,150,000 (Xiaomi).

Testing Environment. We first purchased eight IoT devices
that support our selected solutions and registered the user
accounts for them. These devices cover smart plugs, smart
gateways, and smart cameras, which are commonly used in
daily life. Next, we connected the IoT devices and an Android
smartphone (ONEPLUS A5000) within the same Wi-Fi, and
installed each companion app on the phone. We also deployed
the analysis engine of KINGFISHER on a laptop with Intel
Core i7 1.80 GHz and 16G RAM, and the instrumentation
engine of KINGFISHER on the rooted ONEPLUS phone. Then
we tested each communication solution.
Ethical Consideration. We registered experimental accounts
for all of our evaluations. In our experiments, we simulated
the attacks against our own IoT devices and smartphones in
order not to cause any usability impact on IoT cloud servers or
other IoT devices. Furthermore, we contacted the IoT vendors
of the solutions we analyzed and reported them the identified
vulnerabilities. We have received eight CNVD IDs (China
National Vulnerability Database IDs).

B. SC Extraction Results

The SC extraction results are shown in Table I. Generally,
KINGFISHER successfully analyzed all the eight companion
apps and labeled messages containing the used SCs. It accu-
rately extracted SCs for five solutions except BroadLink, Qihoo
and Xiaomi. In the following, we discuss the analysis results
of KINGFISHER in detail.

1) Function Interface Identification: The function inter-
face identification results are shown in the Function
Interface Identification column of Table I. Each
app contained at least 100,000 Java functions and 100,000
native functions, shown in the #All Functions column.

TABLE I
SC EXTRACTION RESULTS

Vendor
Function Interface Identification Message Collection SCs
All Functions SC-related Function Value Collection Traffic Clustering ASC CSC

Java Native Java Native Functions Values All Local Clustered E V E V

BroadLink 101,720 105,952 458 77 4 860 130 47 11 1 0 0 1
Haier 453,721 137,357 1,844 38 17 5,205 542 312 19 1 1 0 0
Horn 208,710 104,437 667 0 65 11,840 133 44 7 0 0 2 2
Qihoo 225,999 121,994 226 373 5 1,615 892 729 12 0 1 1 1
Tuya 256,310 154,178 1,047 57 6 65 255 25 10 0 0 1 1

Xiaomi 538,277 125,808 1,570 11 6 665 141 14 6 0 0 3 1
Xiaoyi 111,126 141,960 157 121 32 8,415 2,391 1,757 60 2 2 1 1
ZTE 148,077 126,650 245 627 24 6,515 1,669 517 25 1 1 0 0

E refers to SC extraction results of KINGFISHER; V refers to the SC benchmark built by experienced experts.

KINGFISHER filtered and identified no more than 2,000 SC-
related functions in Java code and native code for each
companion app (see #SC-related column). Through our
manual inspections, we observed that SC-related functions are
commonly implemented in specific components, such as the
third-party Android SDK or libraries. To invoke the libraries
correctly, these components are seldom obfuscated or stripped.
Therefore, KINGFISHER can easily identify the SC-related
functions without being affected by app obfuscation/stripping.

Notice that KINGFISHER did not locate any native functions
in the Horn companion app. We manually examined the app
and found that Horn app implements the whole IoT-to-Mobile
communication in Java code. In general, the filtered SC-related
functions only accounted for a small proportion (around 0.3%)
of all app functions. The results indicated that our interface
locating method is effective in improving analysis efficiency,
as it avoids analyzing functions not related to SCs.
False Positive (FP) and False Negative (FN). Due to the large
number of all functions and identified SC-related functions in
a companion app and the lack of benchmark, it is costly to
manually inspect the FP and FN of KINGFISHER Function
Interface Identification results. But FP and FN do not affect the
subsequent SC extraction to a large extent because the value-
based data flow analysis double-checks the identified SCs.

2) Message Collection: After locating the SC-related
functions, we executed each companion app to start the
IoT-to-Mobile communication and meanwhile KINGFISHER
collected the runtime SC-related messages (shown in the
Message Collection column of Table I).
Function Value Collection. KINGFISHER collected infor-
mation about SC-related functions; the results are shown in
the #Function Value Collection column. Generally,
the number of invoked SC-related functions (#Functions
column) ranges from 4 (BroadLink) to 65 (Horn). Also on
the average KINGFISHER recorded 3,909 pieces of function
values (#Values column) for each companion app. Among
them, from Horn we collected more then 10,000 pieces of
function values. The reason is that Horn launches the IoT-to-
Mobile communication during the device binding procedures,
which involve a higher number of operations, such as device
discovery broadcast and SC negotiation.
Traffic Clustering. The #Traffic Clustering column

shows the results of traffic clustering. To ensure that enough
transmitted packets were collected, we executed IoT-to-Mobile
communication for each companion app many times until
more than 100 packets were captured. As a result, the total
number of transmitted packets KINGFISHER collected for each
app (Column #All) ranges from 130 (BroadLink) to 2,391
(Xiaoyi) and the number of IoT-to-Mobile communication
packets (#Local column), filtered by IP addresses, ranges
from 14 (Xiaomi) to 1,757 (Xiaoyi), accounting for about 60%.
After that, KINGFISHER clustered these packets to obtain the
IoT-to-Mobile communication packets that contain SC-related
packets; the results are listed in the #Clustered column.
On the average, 19 packets were filtered for each companion
app, accounting for about 2.4% of the total number of packets.
This proportion also indicates that our traffic cluster methods is
able largely reduce redundancy and improve efficiency. After
clustering, KINGFISHER randomly chose one packet from
each cluster for further SC extraction.
False Positive (FP) and False Negative (FN). For the function
value collection, we should only guarantee there is no FN
in our results. Because we adopt the value-based analysis to
recognize the SCs, its accuracy depends on the similarity be-
tween values. Since the IoT-to-Mobile communication related
values are usually present only in specific protocol patterns,
it is unlikely that other irrelevant parameters or return values
would have high similarity with them. Hence, we just need
to collect enough SC-related values to track the SC data flow.
So we manually checked the results of the Function Value
Collection and found that all the SC values were contained in
our results.

To evaluate the accuracy of traffic clustering, we executed
a manual validation to check the packets in the IoT-to-Mobile
communication packet list. The result of the validation showed
that at least one packet fully met our requirements (that is, to
be related to SCs) for each app, which confirms that our cluster
method is effective in obtaining at least one packet payload to
be used for further analysis to extract the SC.

3) Extracted SCs: After collecting SC-related messages,
KINGFISHER conducted the value-based analysis to extract the
SCs. To evaluate the accuracy of SC extraction results, we first
built the SC benchmark for the eight products. Specifically,
we invited some security experts, who are experienced in

Android app analysis and familiar with IoT systems and their
communication, to help us build a reference dataset for the
used SCs in the eight products. By reverse engineering and
dynamically debugging the apps, constructing control flow
from network interfaces and tracking the SC data flow, we
successfully extracted the used SCs of all the eight products
and their related functions. This procedure took about seven
days and each result was agreed on by at least two experts
to avoid human bias/errors. We took the reference dataset
as the benchmark to evaluate the SC extraction results of
KINGFISHER. Note that there were some SCs changed in
every session, so we also compared the SC-related functions
to double confirm the results.

As shown in the V columns in Table I, KINGFISHER accu-
rately identified the used SCs in five products, i.e., Haier, Horn,
Tuya, Xiaoyi and ZTE. The accuracy of KINGFISHER SC ex-
traction is around 69% with 9 correct SCs in 13 identified SCs.
Interestingly, we found that for Horn and Xiaoyi, KINGFISHER
identified more than one SC; these results were manually
confirmed. Both solutions assemble two values to construct
the SC, and at the code level, it is correct for KINGFISHER
to label each of them as a separate SC. The labeled SCs
and SC-related functions were further used to detect security
violations. For the three products (i.e., BroadLink, Qihoo and
Xiaomi), in which KINGFISHER did not identify their used SCs
successfully, we manually labeled their SC values and the SC-
related functions for further security violation detection.
False Positive (FP) and False Negative (FN). The extraction
results by KINGFISHER have two false positives; one is related
to the CSC used in BroadLink and the other in the ASC used
in Qihoo. BroadLink implements its IoT-to-Mobile commu-
nication encryption procedure, which manages the CSC, in
native code, so KINGFISHER could not split the CSC from
the string memory buffer since the code contiguously stores
other data directly following the CSC, which does not end
with a sequence of ‘00’. As a result, KINGFISHER recognized
the value as a longer string and excluded it. For Qihoo,
KINGFISHER successfully identified its CSC but could not
find the ASC. This is because Qihoo uses same values and
CSC format as described in Section IV-C to implement both
ASCs and CSCs. Hence, KINGFISHER identified this value as
a CSC rather than an ASC.

There are two false negatives in the KINGFISHER SC
extraction results, because KINGFISHER mistakenly identified
the ASC in BroadLink and the CSC in Xiaomi. For BroadLink,
KINGFISHER labeled the CSC value as ASC because one
data construction function (dnaControl) takes a JSON
string including the CSC as a parameter, conforming the ASC
format as described in Section IV-C. The CSC of Xiaomi is
similar to CSC of BroadLink, whose CSC is used as a part
of a string parameter of AES_cbc_encrypt function in
libmiio.so, and KINGFISHER mistakenly identified three
SC candidates but excluded the correct one.

Generally, KINGFISHER did not recognize the SCs used in
those three products successfully because KINGFISHER did
not identify some SC-related candidates, in which the SC are

TABLE II
SECURITY VIOLATION RESULTS

Vendors P1 P2 P3 P4 P5 P6 P7 P8 P9

BroadLink ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓
Haier ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗
Horn ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓
Qihoo ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓
Tuya ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓

Xiaomi ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓
Xiaoyi ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓
ZTE ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗

✗ insecure implementations that violate this property.
✓ no violation found.

used as individual values and can be parsed correctly, due to
the obfuscation technologies. But as mentioned before, such
failures can be avoided by manually labeling the SC-related
candidates as well as their semantics information in Function
Interface Identification without a significant time overhead.

C. Security Violations

After obtaining the SCs, we analyzed the whole SC life
cycle and checked whether it satisfies the security properties
described in Section III. Table II shows the results of KING-
FISHER analysis for the SC security. As we can see, all the
eight products violate several security properties. In general,
most IoT vendors adopt secure solutions for SC generation and
storage. The only exceptions are BroadLink that implements an
insecure SC generation, and Xiaoyi that violates the security
property of SC storage. On the other hand, all solutions
violate the SC distribution and usage security best practices.
As for SC update, all vendors, except Horn and Xiaoyi, have
a vulnerable implementation. Among the eight IoT vendors,
five vendors, i.e., Haier, Qihoo, Tuya, Xiaoyi and ZTE, adopt
Cloud-Centric schemes for SC generation and distribution,
whereas two vendors, i.e., BroadLink, Xiaomi, adopt Device-
Centric schemes, in which the SC is generated and distributed
by the IoT device. Only Horn implements a local Mutual
Negotiation between the device and companion app for the SC.
In the following, we describe in details the security violation
detection results obtained by KINGFISHER.

1) Insecurely Generated SCs: Among the analyzed solu-
tions, only BroadLink violated P1 as its SC was predictable
in that it had repeated subsequences. We further checked and
found that the SC of BroadLink was composed by using four
subsequences from a fixed set of 15 subsequences. That means
that the device can only generate a limited number of different
SCs. We infer that this may be caused by constrained device
resources (i.e., memory and processor).

2) Insecurely distributed SCs: All products did not provide
enough protections for the distribution of SCs. For five devices
(i.e., Haier, Qihoo, Tuya, Xiaoyi and ZTE) adopting Cloud-
Centric schemes, though they utilized TLS to protect the SC
distribution, none of their SC distributions were protected with
secure TLS protocol or multi-authentication, thus violating P2.
The two products using device-centric schemes and Horn with
the mutual negotiation scheme ((i.e., BroadLink and Xiaomi)

implemented their SC distribution without TLS protection,
thus also violating P2. Moreover, two products (i.e., BroadLink
and Xiaomi) generated their SCs locally; however, the SCs
were still reported to the cloud after generation. Thus, we also
consider them as violating P3.

To validate those findings, we manually checked their
distribution mechanisms and the results confirmed the findings
of KINGFISHER. Specifically, Haier, Qihoo, Tuya, Xiaoyi and
ZTE implemented cloud-centric schemes, by which the SCs
were distributed by the cloud and then transmitted to both IoT
devices and companion apps over an HTTPS connection. The
other three vendors implemented their customized SC distri-
bution in the Wi-Fi network. BroadLink utilized the AES-CBC
encryption algorithm to protect the SC distribution. However,
it used the default distribution key and initial vector, which
were embedded in the companion app, so that an attacker
could easily extract them by reverse engineering the app,
and then decrypt the communication to obtain the transmitted
SC. The Xiaomi companion app first connected to the subnet
of the device during the binding phase. The device then
distributed the SC in plaintext to the app under the subnet.
This implementation is vulnerable since the attacker would be
able to obtain the SC by connecting to the subnet and sending
a fixed request message; then the device would transmit the
SC without authenticating the request message. As for Horn,
the SC negotiation process is insecure because of the lack of
encryption protection, so that the attacker can easily obtain
the exchanged nonces by just passive eavesdropping and then
calculate the SC.

3) Insecurely Validated SCs: All the eight devices im-
plement vulnerable SC validation. Generally, all the eight
devices violated P4. Except Xiaoyi, seven devices violated P5.
Moreover, six devices (i.e., BroadLink, Horn, Tuya, Xiaomi,
Xiaoyi and ZTE) violated P6.

Six devices implemented one type of SCs, that is, two
devices (i.e., Haier and ZTE) only implemented ASCs while
four devices (i.e., BroadLink, Horn, Tuya and Xiaomi) only
implemented CSCs. Hence, they are considered as violating
P4. Moreover, although Qihoo and Xiaoyi implemented both
ASCs and CSCs, they used the same value to configure
ASCs and CSCs. Therefore, KINGFISHER also labeled them
as violating P4.

For the oblivious validation feedback, we found that the SC
responses by all the devices, except for the ones by Xiaoyi,
were different depending on whether the SCs or some other
data (e.g., device identifier, protocol format) were incorrect. As
for Xiaoyi, its responses were always the same independently
of whether we modified its SCs or other data fields.

When checking brute attack resistance, we found that six
devices, i.e., BroadLink, Horn, Tuya, Xiaomi, Xiaoyi and ZTE,
would accept more than 20 erroneous connection attempts
without restricting the connection, such as denying requests
from one source IP address. For Haier, it replied with the
same error messages after the fifth attempt even if the SC was
correct. Similarly, Qihoo adopted a strict scheme by which
it did not respond after the second attempt. For the above

two devices, only when resetting the connection, the devices
would return to a normal state, which limits attack efficiency
to a certain extent.

In addition to the three security properties, we checked
the detailed SC usages to verify the security of their IoT-
to-Mobile communication implementations. BroadLink, Horn,
Tuya and Xiaomi only implemented the CSCs used to encrypt
their IoT-to-Mobile communication. Specifically, BroadLink,
Xiaomi and Horn adopted the AES-CBC algorithm to encrypt
the IoT-to-Mobile communication messages. But there is slight
difference. Specifically, BroadLink and Horn used their CSC
as the encryption key directly without any further processing,
while Xiaomi calculated the MD5 value of the CSC and used
it as encryption key. Tuya adopted the AES-ECB encryption
algorithm with CSC directly as encryption key to protect the
transmitted messages. Since the AES-ECB cryptographic algo-
rithm has been proved to be insecure [58], it cannot guarantee
the confidentiality of the IoT-to-Mobile communication. Haier
and ZTE only implemented the ASCs used for authentication
credentials. And none of their IoT-to-Mobile communication
was configured with encryption protection. In particular, Haier
only encoded the IoT-to-Mobile communication messages,
which contained the ASC, and sent them to the devices rather
than encrypting them, while ZTE just transmitted the ASCs in
plaintext TCP streams. As a result, their ASC transmission
is highly insecure. Because once the attacker recovers the
corresponding decoding algorithm from the companion app or
just eavesdrops the traffics, the attacker can obtain the ASC
and then perform an active Man-in-the-Middle attack. Qihoo
and Xiaoyi implemented the same ASC and CSC, which are
also vulnerable because the attacker can not only decrypt the
communication but also impersonate as the victim to pass
authentication as long as he obtains any one of the SCs.

4) Insecurely Protected SCs: Only Xiaoyi implemented
insecure SC storage. Xiaoyi stored its SCs encrypted, but after
a manual analysis, we found that it also stored its encryption
key in the app local storage without any protection, so that
KINGFISHER also labeled it as violating P7.

5) Insecurely Revoked SCs: We found that six devices did
not implement a secure SC update and revocation mechanism,
i.e., BroadLink, Haier, Qihoo, Tuya, Xiaomi and ZTE. Among
them, four devices (i.e., BroadLink, Qihoo, Tuya and Xiaomi)
would not update the SC before unbinding or network re-
provisioning. Their SCs remained fixed more than eight hours
so that we consider them as violating P8. Two devices (i.e.,
Haier and ZTE) implemented an insecure SC revocation as the
old SCs could still be valid after a new SC was distributed,
violating P9.

D. Attacks

1) Device Hijacking: Since the SCs are shared by both the
IoT device and the companion app, vulnerable SCs may not
only cause device data injection, but also device hijacking.
That is, if the attacker obtains the SCs, the attacker would
be able to construct device control commands and messages,
which involve the SCs (for either authentication or encryption).

Like data injection attacks, if BroadLink SCs are obtained by
an attacker, they can be used to construct user messages with
the same protocol as device messages. Hence, the attacker
can impersonate the legitimate companion app to send fake
commands to control the device.

2) Data Injection: When an attacker obtains the ASC
used in the IoT-to-Mobile communication, the attacker can
forge device status messages. As a result, data from “device”
cannot be trusted. Take BroadLink as an example; since the
ASC and CSC it uses are equal, the attacker can also obtain
the ASC after obtaining the CSC. Moreover, the BroadLink
IoT-to-Mobile communication protocol can be recovered by
reversing the companion app. Therefore, the attacker is able
to construct legal messages with the ASC. Since the IoT-to-
Mobile communication security is guaranteed by SCs only, the
user cannot distinguish the forged messages from actual device
messages if they use same SCs. This is even more dangerous
when the device owner configures action-trigger rules, which
have cascade effects resulting in the automatic execution of
other operations.

3) Privacy Leakage: If a CSC is insecurely used (e.g., the
CSC is generated with repeated subsequences like the case
of BroadLink), the number of possible CSCs that an attacker
has to try decreases and thus the attacker can quickly find a
correct CSC. As a result the attacker can decrypt all IoT-to-
Mobile communications.

VI. DISCUSSION

Problem Scope. In this paper, we focus on analyzing Wi-
Fi based IoT-to-Mobile communication. Although we did not
include the other channels (e.g., Bluetooth and Zigbee), KING-
FISHER can be easily extended to analyze the other channels
by collecting information about app code and communication
traffic.
Manual Efforts. KINGFISHER is a partial-automated analysis
tool, which involves manual operations, such as enabling the
procedure of IoT-to-Mobile communication for SC generation,
distribution, validation, protection and revocation. These man-
ual operations are inevitable because these operations are het-
erogeneous in different solutions, in which user participation is
necessary. Besides, SCs are required to be confirmed manually
if an app code is obfuscated or stripped.
Extended Application Scenarios. KINGFISHER utilizes com-
panion apps to explore the security of SCs and IoT-to-Mobile
communication, so source code is not necessary. Moreover, in
this paper, we have used KINGFISHER to analyze the most
popular ones — Android companion apps. But as KING-
FISHER is not tied to a specific framework and is suitable
for both Java and C/C++, it can also be used to analyze other
apps (e.g., iOS apps) as long as network traffic of IoT-to-
Mobile communication can be collected.

VII. RELATED WORKS

Prior works on IoT security mainly focus on devices.
Firmalice [59] is a binary analysis framework to automati-
cally detect authentication bypass flaws in embedded device

firmware. Costin et al. [60] performed the first large-scale
static analysis of firmware images, while Kim et al. [61]
proposed an approach for the dynamic analysis of firmware
in scale via arbitrated emulation. Some work also analyzed
IoT device security via analyses of the companion app [62].
Unlike such previous work, we focus on device authentication
security, especially on the security of the SCs used for IoT-to-
Mobile communication, instead of code defects.

Other related work focuses on device communication. Chen
et al. [2] performed a study of the life cycle of remote binding
in IoT and demystified various design principles by using a
finite state machines model. Sethi et al. [63] pointed out that
most device pairing protocols are vulnerable to misbinding.
They implemented related attacks and showed how the attacks
can be found by using formal models of the protocols. Jia et
al. [9] discussed the security risks in the use of the MQTT
protocol and introduced some new general design principles.
Such previous work is related to the communications between
the cloud platform and the IoT devices. In contrast, our
analysis focuses on IoT-to-Mobile communication between the
IoT devices and their companion apps.

There is also work focusing on credential security. Ma et
al. [48] [64] performed an experimental study to analyze the
security of the SMS One-Time Password (OTP) authentication
protocols. Rahat et al. [65] and Wang et al. [66] analyzed
the vulnerabilities of OAuth Implementations, including the
security of OAuth access token. Some well known manufac-
turers and organizations also proposed their own token or IoT
security mechanisms, such as Microsoft Azure [67], Amazon
AWS [68], Google Cloud [69], IBM [70], Kaspersky [71],
OWASP [18] and IETF RFCs [15], [16]. Unlike such previous
works, we focus on security of the SCs used in IoT-to-Mobile
communication and propose a comprehensive and complete
set of best practices covering the SC entire life cycle. Also
our work focuses on tokens in IoT environments, in which
specific security vulnerabilities (such as misusing tokens as
encryption keys) exist due to the limited resources of many
IoT systems, rather than in traditional browser-server or the
OAuth model.

VIII. CONCLUSION

In this paper, we performed a comprehensive analysis of
IoT-to-Mobile communication with focus on shared credentials
(SCs). We defined nine security proprieties of SC imple-
mentations, covering the whole life cycle. Following these
proprieties, we proposed an SC-centric analysis framework —
KINGFISHER, to identify SCs by a value-based method and
determine whether they are vulnerable by static and dynamic
testing. Then we evaluated the IoT-to-Mobile communication
solutions of eight popular IoT vendors. Based on the analysis
by KINGFISHER, we found all these products implement an
insecure SC life cycle, which may result in sensitive data leak-
age, persistent denial-of-service, and even device hijacking.

REFERENCES

[1] D. A. Gratton, The Handbook of Personal Area Networking Technologies
and Protocols. Cambridge University Press, 2013.

[2] J. Chen, C. Zuo, W. Diao, S. Dong, Q. Zhao, M. Sun, Z. Lin, Y. Zhang,
and K. Zhang, “Your iots are (not) mine: On the remote binding between
iot devices and users,” in Proceedings of the 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2019.

[3] B. Yuan, Y. Jia, L. Xing, D. Zhao, X. Wang, and Y. Zhang, “Shattered
chain of trust: Understanding security risks in cross-cloud iot access
delegation,” in Proceedings of the 29th USENIX Security Symposium
(Usenix Security), 2020.

[4] “EU general data protection regulation (GDPR),” https://gdpr-info.eu/,
Accessed 2021.

[5] “101 complaints on eu-us transfers filed,” https://noyb.eu/en/101-com
plaints-eu-us-transfers-filed, Accessed 2021.

[6] “Amazon gdpr violation,” https://www.sec.gov/ix?doc=/Archives/edg
ar/data/1018724/000101872421000020/amzn-20210630.htm, Accessed
2021.

[7] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion
(unfixable) flaws on a billion devices: Rethinking network security for
the internet-of-things,” in Proceedings of the 14th ACM Workshop on
Hot Topics in Networks (HotNets), 2015.

[8] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in Proceedings of the 26th
USENIX Security Symposium (Usenix Security), 2017.

[9] Y. Jia, L. Xing, Y. Mao, D. Zhao, X. Wang, S. Zhao, and Y. Zhang,
“Burglars’ iot paradise: Understanding and mitigating security risks of
general messaging protocols on iot clouds,” in Proceeding of the 41st
IEEE Symposium on Security and Privacy (S&P), 2020.

[10] Y. Zhou, L. Wu, Z. Wang, and X. Jiang, “Harvesting developer creden-
tials in android apps,” in Proceedings of the 8th ACM Conference on
Security & Privacy in Wireless and Mobile Networks (WiSec), 2015.

[11] H. Wen, J. Li, Y. Zhang, and D. Gu, “An empirical study of sdk
credential misuse in ios apps,” in Proceedings of the 25th Asia-Pacific
Software Engineering Conference (APSEC), 2018.

[12] C. Zuo, Q. Zhao, and Z. Lin, “Authscope: Towards automatic discovery
of vulnerable authorizations in online services,” in Proceedings of the
24th ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017.

[13] C. Zuo, Z. Lin, and Y. Zhang, “Why does your data leak? uncovering
the data leakage in cloud from mobile apps,” in Proceedings of the 40th
IEEE Symposium on Security and Privacy (S&P), 2019.

[14] “The oauth 1.0 protocol,” https://datatracker.ietf.org/doc/html/rfc5849,
Accessed 2021.

[15] “The oauth 2.0 authorization framework,” https://datatracker.ietf.org/d
oc/html/rfc6749, Accessed 2021.

[16] “Json web token (jwt),” https://datatracker.ietf.org/doc/html/rfc7519,
Accessed 2021.

[17] “Http state management mechanism,” https://datatracker.ietf.org/doc/h
tml/rfc6265, Accessed 2021.

[18] “Owasp cheat sheet series,” https://cheatsheetseries.owasp.org/, Ac-
cessed 2021.

[19] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith,
“Sok: Lessons learned from android security research for appified
software platforms,” in Proceedings of the 37th IEEE Symposium on
Security and Privacy (S&P), 2016.

[20] Y. Lee, T. Li, N. Zhang, S. Demetriou, M. Zha, X. Wang, K. Chen,
X. Zhou, X. Han, and M. Grace, “Ghost installer in the shadow: Security
analysis of app installation on android,” in Proceedings of the 47th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2017.

[21] H. Altuwaijri and S. Ghouzali, “Android data storage security: A review,”
Journal of King Saud University-Computer and Information Sciences,
2020.

[22] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Bias: Bluetooth
impersonation attacks,” in Proceedings of the 41st IEEE Symposium on
Security and Privacy (S&P), 2020.

[23] Y. Zhang, J. Weng, R. Dey, Y. Jin, Z. Lin, and X. Fu, “Breaking
secure pairing of bluetooth low energy using downgrade attacks,” in
Proceedings of th 29th USENIX Security Symposium (Usenix Security),
2020.

[24] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “Iot goes
nuclear: Creating a zigbee chain reaction,” in Proceedings of the 38th
IEEE Symposium on Security and Privacy (S&P), 2017.

[25] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Nist special
publication 800-57,” NIST Special publication, 2020.

[26] “The aes-cbc cipher algorithm and its use with ipsec,” https://datatrac
ker.ietf.org/doc/html/rfc3602, Accessed 2021.

[27] “The oauth 2.0 authorization framework: Bearer token usage,” https:
//datatracker.ietf.org/doc/html/rfc6750, Accessed 2021.

[28] “The transport layer security (tls) protocol version 1.2,” https://www.ie
tf.org/rfc/rfc5246.html, Accessed 2021.

[29] “Cisa least privilege,” https://us-cert.cisa.gov/bsi/articles/knowledge/pr
inciples/least-privilege, Accessed 2021.

[30] S. Vaudenay, “Security flaws induced by cbc padding—applications
to ssl, ipsec, wtls...” in Proceedings of the 21st Annual International
Conference on the Theory and Applications of Cryptographic Techniques
(Eurocrypt), 2002.

[31] M. Y. C. Wei, L. M. Grupp, F. E. Spada, and S. Swanson, “Reliably
erasing data from flash-based solid state drives,” in Proceedings of the
9th USENIX Conference on File and Storage Technologies (FAST), 2011.

[32] “Internet x.509 public key infrastructure certificate and certificate re-
vocation list (crl) profile,” https://datatracker.ietf.org/doc/html/rfc5280,
Accessed 2021.

[33] “The definitive guide to encryption key management fundamen-
tals,” https://info.townsendsecurity.com/definitive-guide-to-encryptio
n-key-management-fundamentals, Accessed 2021.

[34] Y. Ye, Z. Zhang, F. Wang, X. Zhang, and D. Xu, “Netplier: Proba-
bilistic network protocol reverse engineering from message traces,” in
Proceedings of the 28th Annual Network and Distributed System Security
Symposium (NDSS), 2021.

[35] G. Bossert, F. Guihéry, and G. Hiet, “Towards automated protocol
reverse engineering using semantic information,” in Proceedings of the
9th ACM Symposium on Information, Computer and Communications
Security (AsiaCCS), 2014.

[36] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic protocol
reverse engineering from network traces,” in Proceedings of the 16th
USENIX Security Symposium (Usenix Security), 2007.

[37] “Android binder ipc,” https://source.android.com/devices/architecture/hi
dl/binder-ipc, Accessed 2021.

[38] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic
extraction of protocol message format using dynamic binary analysis,”
in Proceedings of the 14th ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2007.

[39] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in Proceedings of the 11th Annual
Information Security Symposium (CERIAS), 2010.

[40] “Classloader,” https://developer.android.com/reference/java/lang/ClassL
oader, Accessed 2021.

[41] “Frida,” https://frida.re/, Accessed 2021.
[42] “Android tcpdump,” https://www.androidtcpdump.com/, Accessed 2021.
[43] “Sequence alignment,” https://en.wikipedia.org/wiki/Sequence alignme

nt, Accessed 2021.
[44] “Needleman-wunsch algorithm,” https://en.wikipedia.org/wiki/Needle

man%E2%80%93Wunsch algorithm, Accessed 2021.
[45] R. R. Sokal, “A statistical method for evaluating systematic relation-

ships,” Univ. Kansas, Sci. Bull., 1958.
[46] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang,

“{SUPOR}: Precise and scalable sensitive user input detection for
android apps,” in Proceedings of the 24th USENIX Security Symposium
(Usenix Security), 2015.

[47] S. Lounici, M. Rosa, C. M. Negri, S. Trabelsi, and M. Önen, “Opti-
mizing leak detection in open-source platforms with machine learning
techniques,” in Proceedings of the 7th International Conference on
Information Systems Security and Privacy (ICISSP), 2021.

[48] S. Ma, R. Feng, J. Li, Y. Liu, S. Nepal, E. Bertino, R. H. Deng, Z. Ma,
and S. Jha, “An empirical study of sms one-time password authentication
in android apps,” in Proceedings of the 35th Annual Computer Security
Applications Conference (ACSAC), 2019.

[49] “Burp suite,” https://portswigger.net/burp, Accessed 2021.
[50] “Tuya,” https://www.tuya.com/, Accessed 2021.
[51] “Broadlink,” https://www.ibroadlink.com/, Accessed 2021.
[52] “Haier,” https://www.haier.com/global/, Accessed 2021.
[53] “Horn,” http://www.ihorn-tech.com/, Accessed 2021.
[54] “Qihoo,” https://jia.360.cn/, Accessed 2021.
[55] “Xiaomi,” https://www.mi.com/global/, Accessed 2021.
[56] “Xiaoyi,” https://www.xiaoyi.com/, Accessed 2021.
[57] “Zte,” https://www.zte.com.cn/global/, Accessed 2021.

https://gdpr-info.eu/
https://noyb.eu/en/101-complaints-eu-us-transfers-filed
https://noyb.eu/en/101-complaints-eu-us-transfers-filed
https://www.sec.gov/ix?doc=/Archives/edgar/data/1018724/000101872421000020/amzn-20210630.htm
https://www.sec.gov/ix?doc=/Archives/edgar/data/1018724/000101872421000020/amzn-20210630.htm
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc6265
https://cheatsheetseries.owasp.org/
https://datatracker.ietf.org/doc/html/rfc3602
https://datatracker.ietf.org/doc/html/rfc3602
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6750
https://www.ietf.org/rfc/rfc5246.html
https://www.ietf.org/rfc/rfc5246.html
https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-privilege
https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-privilege
https://datatracker.ietf.org/doc/html/rfc5280
https://info.townsendsecurity.com/definitive-guide-to-encryption-key-management-fundamentals
https://info.townsendsecurity.com/definitive-guide-to-encryption-key-management-fundamentals
https://source.android.com/devices/architecture/hidl/binder-ipc
https://source.android.com/devices/architecture/hidl/binder-ipc
https://developer.android.com/reference/java/lang/ClassLoader
https://developer.android.com/reference/java/lang/ClassLoader
https://frida.re/
https://www.androidtcpdump.com/
https://en.wikipedia.org/wiki/Sequence_alignment
https://en.wikipedia.org/wiki/Sequence_alignment
https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm
https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm
https://portswigger.net/burp
https://www.tuya.com/
https://www.ibroadlink.com/
https://www.haier.com/global/
http://www.ihorn-tech.com/
https://jia.360.cn/
https://www.mi.com/global/
https://www.xiaoyi.com/
https://www.zte.com.cn/global/

[58] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in Proceedings
of the 20th ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2013.

[59] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice - automatic detection of authentication bypass vulnerabilities
in binary firmware,” in Proceedings of the 22nd Annual Network and
Distributed System Security Symposium (NDSS), 2015.

[60] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale
analysis of the security of embedded firmwares,” in Proceedings of the
23rd USENIX Security Symposium (Usenix Security), 2014.

[61] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Firmae:
Towards large-scale emulation of iot firmware for dynamic analysis,”
in Proceedings of the 37th Annual Computer Security Applications
Conference (ACSAC), 2020.

[62] N. Redini, A. Continella, D. Das, G. D. Pasquale, N. Spahn, A. Machiry,
A. Bianchi, C. Kruegel, and G. Vigna, “Diane: Identifying fuzzing
triggers in apps to generate under-constrained inputs for iot devices,”
in Proceedings of the 42nd IEEE Symposium on Security and Privacy
(S&P), 2021.

[63] M. Sethi, A. Peltonen, and T. Aura, “Misbinding attacks on secure device
pairing and bootstrapping,” in Proceedings of the 14th ACM Symposium
on Information, Computer and Communications Security (AsiaCCS),
2019.

[64] S. Ma, J. Li, H. Kim, E. Bertino, S. Nepal, D. Ostry, and C. Sun,
“Fine with “1234”? an analysis of sms one-time password randomness
in android apps,” in Proceedings of the 43rd IEEE/ACM International
Conference on Software Engineering (ICSE), 2021.

[65] T. Al Rahat, Y. Feng, and Y. Tian, “Oauthlint: An empirical study
on oauth bugs in android applications,” in Proceedings of the 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2019.

[66] H. Wang, Y. Zhang, J. Li, H. Liu, W. Yang, B. Li, and D. Gu, “Vulner-
ability assessment of oauth implementations in android applications,”
in Proceedings of the 31st Annual Computer Security Applications
Conference (ACSAC), 2015.

[67] “Microsoft azure iot security deployment,” https://docs.microsoft.com
/en-us/azure/iot-fundamentals/iot-security-deployment, Accessed 2021.

[68] “Aws iot security,” https://docs.aws.amazon.com/iot/latest/developergu
ide/iot-security.html, Accessed 2021.

[69] “Google cloud device security,” https://cloud.google.com/iot/docs/conc
epts/device-security, Accessed 2021.

[70] “Ibm security token,” https://www.ibm.com/docs/en/was/9.0.5?topic=au
thentication-security-token, Accessed 2021.

[71] “Kaspersky best practices for iot security,” https://www.kaspersky.
com/resource-center/preemptive-safety/best-practices-for-iot-security,
Accessed 2021.

https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-deployment
https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-deployment
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security.html
https://cloud.google.com/iot/docs/concepts/device-security
https://cloud.google.com/iot/docs/concepts/device-security
https://www.ibm.com/docs/en/was/9.0.5?topic=authentication-security-token
https://www.ibm.com/docs/en/was/9.0.5?topic=authentication-security-token
https://www.kaspersky.com/resource-center/preemptive-safety/best-practices-for-iot-security
https://www.kaspersky.com/resource-center/preemptive-safety/best-practices-for-iot-security

	Introduction
	Threats against Shared Credentials
	Security Properties of Shared Credentials
	Detecting Insecurely Used Shared Credentials
	Function Interface Identification
	Message Collection
	Value-based Analysis.
	Security Violation Detection
	Running Example

	Experimental Results
	Experiment Setup
	SC Extraction Results
	Function Interface Identification
	Message Collection
	Extracted SCs

	Security Violations
	Insecurely Generated SCs
	Insecurely distributed SCs
	Insecurely Validated SCs
	Insecurely Protected SCs
	Insecurely Revoked SCs

	Attacks
	Device Hijacking
	Data Injection
	Privacy Leakage

	Discussion
	Related Works
	Conclusion
	References

