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Consensus-Clustering-Based Automatic
Distribution Matching for Cross-Domain Image

Steganalysis
Ju Jia, Meng Luo, Siqi Ma, Lina Wang, and Yang Liu

Abstract—Image steganalysis is a technique to detect whether an image contains hidden information. Although the existing
cross-domain steganalysis methods have been presented to narrow the distribution gap between different domains, it is still
challenging to effectively capture the transferable steganalysis representations under the condition of severe distribution shifts. To
address this issue, we propose a novel consensus-clustering-based automatic distribution matching scheme, called CADM, which can
automatically and accurately match inconsistent distributions in cross-domain steganalysis scenarios. First, the original steganalysis
features are clustered by the spatially constrained fuzzy c-means (SCFCM) algorithm with controllable parameters to fully perceive and
mine inherent structural relationships. Subsequently, the cluster consensus knowledge is derived from the perspective of intra-domain
and inter-domain to facilitate the clustering and the matching. In this way, the representations of weak stego signals can be augmented
by identifying cluster centers that can be combined across domains. Ultimately, the cycle-consistent optimization and adaptation is
achieved by gradually adjusting the learning strength of well-aligned and poorly-aligned samples to promote the positive transfer of
overlapped clusters and prevent the negative transfer of outlier clusters. Furthermore, extensive experiments on various benchmark
databases for cross-domain steganalysis demonstrate the superiority of CADM over the current state-of-the-art methods.

Index Terms—Consensus clustering, transferable representations, structural relationships, automatic distribution matching,
cross-domain steganalysis
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1 INTRODUCTION

IMAGE steganography aims to embed secret messages into
images by partially replacing pixel values or transform

coefficients while maintaining the visual imperceptibility
and statistical undetectability [1], [2], [3], [4], [5], [6]. Ac-
cording to the design strategy of embedding modifications,
the steganographic methods can be divided into the con-
ventional nonadaptive and modern adaptive steganogra-
phy, such as nsF5 [1], J-UNIWARD [2], UERD [3], and
J-MiPOD [6]. Steganalysis schemes are considered as the
countermeasures for detecting steganography, which try to
discover the small traces caused by modification operations
to determine the existence of hidden information [7], [8].
Nowadays, a large number of steganalysis schemes have
emerged to capture steganographic embedding operations
by constructing manual features or integrating deep fea-
tures, mainly including JRM [9], DCTR [10], and SRNet [11].
Fig. 1 gives a typical application scenario of steganography
and steganalysis.
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Fig. 1: An example illustrates the implementation process of steganog-
raphy and steganalysis. Note that although there is no difference in
visual observation between the cover images and the stego images,
their steganalysis features will be significantly different in statistical
distribution.

Although great progresses have been achieved for ste-
ganalysis under the condition of distribution matching [7],
[8], [9], [10], [11]. However, in more realistic scenarios where
the statistical distributions between the training data (i.e.,
source domain) and testing data (i.e., target domain) are sig-
nificantly different, which will inevitably lead to the perfor-
mance degradation of steganography detection [12]. More-
over, in the field of steganalysis, there are many factors that
may cause the domain mismatch and distribution shift [13],
[14], [15], such as steganographic algorithm, quality factor,
payload rate, sample proportion, background content, and
so on. From our observation, the main challenging lies in
that these factors resulting in the mismatched steganalysis
are diverse and complicated, so it is much more difficult to
deal with the distribution discrepancy across domains.
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Although some existing methods can effectively handle
the distribution mismatch issues in other research areas [16],
[17], [18], these approaches are designed specifically under
the condition of multiple semantics and multiple classi-
fications. In contrast, steganalysis is essentially a binary
classification problem. In this way, directly employing these
methods in other fields to address the cross-domain ste-
ganalysis problems easily fail to obtain satisfactory results.
Moreover, steganalysis focuses on the use of high-frequency
residuals to enhance the signal-to-noise ratio of stegano-
graphic signals, which can promote the discriminability
between the cover sample and the stego sample. However,
the combination of co-occurrences of different filter resid-
uals is arbitrarily selected to construct high-dimensional
steganalysis representations in cross-domain detection tasks
that may introduce the redundant knowledge and thus
aggravate the negative transfer. Therefore, the mismatch
problems in steganalysis have remarkable differences com-
pared with cross-domain transfer tasks in other fields. For
all the above reasons, it is becoming crucial to design a
reasonable distribution matching scheme according to these
characteristics of mismatched steganalysis.

Recently, a number of research works have been con-
ducted to improve the cross-domain steganalysis perfor-
mance using distribution adaptation methods [12], [13], [15],
[19]. These studies aim to exploit the knowledge in the
source domain to assist in predicting the target domain,
where the source and target data have similar but different
distributions. Most existing approaches are designed to
capture and learn transferable knowledge from the source
domain, where the main challenge is how to effectively
distinguish and utilize the reliable samples (i.e., matched
samples across domains) and the unreliable samples (i.e.,
mismatched samples across domains) in the unaligned dis-
tribution space. To achieve this goal, remarkable efforts have
been made to perform the sample selection from different
perspectives, such as designing suitable criteria [13], [15],
incorporating additional estimator [19], and introducing
novel optimizer [12].

The previous practices for mismatched steganalysis of-
ten pay attention to deal with the distribution discrepancy
problems and attempt to capture domain-invariant repre-
sentations. Unfortunately, these approaches are unable to
accurately discover the latent transferable knowledge and
explicit correlations between different views due to the dis-
tribution shifts. Therefore, most of them tend to suffer from
the following drawbacks: (1) these steganography detection
methods separately implement feature preprocessing and
model training, which makes it difficult to obtain a global
optimal solution; (2) the intra-domain and inter-domain dis-
crepancies are treated equally and the associated informa-
tion (e.g., intrinsic steganographic structure) across domains
is not fully exploited, which further results in lower dis-
criminative and transferable representations; (3) the cover
and stego samples in the source and target domains may be
misaligned because of the disturbing or useless information
(e.g., redundant features and outlier samples).

To address the above issues, a novel consensus-
clustering-based automatic distribution matching scheme
for cross-domain image steganalysis, CADM, is proposed
in this paper, which consists of structural relationship ex-

Fig. 2: The difference between the previous methods and the scheme
proposed in this paper. Under the condition of distribution shifts,
the previous methods tend to produce mismatched cluster boundaries
during clustering due to the ignorance of exploring intrinsic structural
relationships. However, our scheme aims to make better use of con-
sensus clustering by forming overlapping clusters on both the source
and target clusters, thus it can generate matched cluster boundaries
automatically and accurately.

ploration, cluster consensus matching, cycle-consistent opti-
mization and adaptation. Fig. 2 illustrates the difference be-
tween our scheme and previous methods. We first deal with
mismatched data to explore steganographic structure rela-
tions by the spatially constrained fuzzy c-means (SCFCM)
clustering, and impose a new variation-aware structure loss
to unify the steganalysis features across different domains.
Then, the cluster consensus matching is proposed to from
the perspective of intra-domain and inter-domain to cal-
culate the domain loss, which helps to select and leverage
knowledge from the source cluster that is most similar to the
target cluster to achieve the adaptive filling of distribution
gaps. Finally, the predicted values of the classifiers are input
to the joint adaptation layer to adjust the alignment loss,
while the cycle-consistent optimization and adaptation can
be adopted to further improve the generalization perfor-
mance by minimizing the total loss. In this way, CADM can
facilitate the positive transfer of shared clusters and prevent
the negative transfer of outlier clusters through implicit
steganographic cue discovery and exploitation. Moreover,
extensive experiments show that our CADM outperforms
other methods on the challenging cross-domain steganalysis
benchmark datasets, which have validated the effectiveness
of the proposed scheme. The main contribution of this paper
can be briefly summarized as follows:

1) To capture structural relationships from the potential
domains, a spatially constrained fuzzy c-means clus-
tering that can fully exploit both the correlation and
complementarity is introduced, which is conducive
to the discovery of domain-invariant steganographic
modification cues.

2) The cluster consensus matching is proposed to improve
the quality of steganalysis features from two levels, i.e.,
the intra-domain level, which determines the number
of clusters to make the clustering more reasonable, and
the inter-domain level, which identifies cluster centers
that can be combined across domains.

3) A cycle-consistent optimization and adaptation strategy
is designed to enhance the comprehensive performance
via encouraging a collaboration between the source and
target clusters, which also promotes the generalization
and transferability of the knowledge learned from the
cover and stego samples.
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4) To the best of our knowledge, this work is the first time
that a flexible and controllable framework has been pro-
posed for cross-domain steganalysis. Comprehensive
experiments demonstrate that our proposed CADM can
deeply excavate latent information and automatically
perform distribution matching to curb the threat of
negative transfer.

The rest of this article is organized as follows. Section
2 provides the related work and preliminary knowledge.
Section 3 describes the proposed CADM scheme for cross-
domain image steganalysis. Section 4 validates the effec-
tiveness and superiority of our scheme by sufficient exper-
iments and various comparison approaches. The analysis
and discussion of CADM are given in Section 5. Finally, the
conclusions and future work are summarized in Section 6.

2 RELATED WORK AND PRELIMINARIES

2.1 Transferable Knowledge Discovery
The existing solutions address the distribution shift prob-
lems by exploring latent domains to discover the trans-
ferable knowledge, which can be classified into four cate-
gories, namely: 1) instance-level methods; 2) classifier-level
methods; and 3) feature-level methods. The instance-based
methods usually attempt to assign larger weights to signifi-
cant samples and smaller weights to unimportant ones. For
example, Xia et al. [20] proposed a flexible instance weight-
ing framework to potentially correct the distribution bias
by adjusting the dominant factors in domain adaptation.
The classifier-level adaptation is to train a series of classifier
combinations from source and target domains, and then to
achieve the final detection of the target domain by select-
ing the optimal ensemble classifier. Following this, Ren et
al. [21] leveraged multiple auxiliary classifiers to process the
source and target data to further mitigate the distribution
discrepancy from the perspective of classifier property. In
addition, as one of the most commonly used techniques,
the feature-based methods are encouraged to learn domain-
invariant or domain-shared feature representations by align-
ing the distribution differences across domains. This idea
has attracted increasing attention in the recent years and
various approaches have been proposed, including design-
ing handcrafted features (shallow models) [22] and learning
deep features (deep architectures) [23], [24], [25]. There are
some recent works that add adaptation layers or subnet-
works for domain shift problem [26], [27]. Specifically, Li
et al. [28] proposed a deep residual correction network to
match the feature distributions across different domains.
However, most of the above methods learn transferable
representations from a limited source domain, which is
often too ideal to be satisfied in real scenarios. Therefore, our
proposed CADM considers a more practical situation, which
can effectively deal with a more challenging distribution
shift problem.

2.2 Cross-Domain Distribution Alignment
Since the multiple source domain adaptation (MSDA) is an
extension of the single source domain adaptation (SSDA), it
can not only explore intra-domain correlation from a single
source domain, but also capture inter-domain correlation
from multiple source domains [29]. In practice, we are

more likely to obtain a source dataset containing multiple
domains, while acting on an unlabeled target dataset, which
enables us to transfer multi-source knowledge represen-
tations from the source to target. However, the previous
SSDA approaches, straightforward merging multiple differ-
ent source domains into a single source domain, are prone to
the negative transfer for the MSDA problems. Thus, many
researchers have paid more attention to investigating how
to effectively address MSDA problems in visual perception
scenarios. Recently, some representative MSDA methods are
proposed, such as moment matching network (MMN) [30],
adversarial domain aggregation network (ADAN) [17], and
multi-source distilling domain adaptation (MDDA) [31]. All
these MSDA methods mainly rely on a deep feature learning
network to equivalently transform the multiple sources and
target data into the common subspace. A pre-trained deep
model aims to align the inconsistent distributions of source-
target data, which is a common way adopted in MMN
and MDDA. MMN dynamically incorporates the moment
component into deep network based on the error bound to
alleviate the domain discrepancy, while MDDA pre-trains
and fine-tunes a classifier to adjust the target distribution
to the source ones using a weighting strategy. ADAN con-
structs an adapted domain for each source while performing
the alignment operation at the pixel-level towards the target,
and then guarantees diverse adapted domains more closely
aggregated at the feature-level. Different from these works,
our CADM explores the structural relationships to capture
the steganographic structure knowledge by the SCFCM
clustering. By leveraging the cluster consensus matching
across different domains, CADM can effectively perform
the adaptive filling of distribution gaps between the source
and target clusters. Furthermore, our scheme is designed
to minimize the total loss through the cycle-consistent op-
timization and adaptation, which can guarantee automatic
distribution matching and thus substantially different from
other methods.

2.3 Domain Consistency Evaluation
The main challenge of domain consistency evaluation is
how to determine the number of source and target clusters
in steganalysis scenarios. The reason is that the number
of clusters in the source domain and target domain in
other research areas is usually determined according to the
number of corresponding classes. However, steganalysis is
a binary classification problem, so it is obviously unrea-
sonable to directly obtain the number of clusters based on
the number of categories. To tackle this issue, one feasible
solution is to utilize existing clustering quality metrics to
acquire the number of clusters. Unfortunately, these meth-
ods are designed for single-domain settings and cannot fully
take cross-domain correlation knowledge into considera-
tion. Thus, we introduce a criterion, domain consistency
evaluation, which exploits the sample-level consistency to
determine the number of clusters in source and target do-
mains, thereby constructing discriminative clusters.

As illustrated in Fig. 3, for each sample from the source
cluster, we attempt to explore and match the overlapped
clusters in the target domain, and further calculate the
consensus degree between them, that is, the proportion
of samples holding consistent labels across domains. The
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Fig. 3: Illustration of domain consistency score. For each sample from
overlapped clusters, we aim to search for the nearest cluster in the
other domain. Then, the domain consistency score is computed as the
proportion of samples that achieve consensus.

consistency of paired clusters can be evaluated by collecting
samples that achieve consensus.

Definition 1 (Consensus Degree): Given a pair of over-
lapped clusters {xisp}

nsp
i=1 and {xjtq}

ntq
j=1 with the correspond-

ing cluster center samples zsp and ztq , sp and tq denote
the p-th and q-th clusters in the source and target domains,
respectively, and nsp and ntq are the number of samples in
the corresponding clusters. We intend to measure the degree
of consensus at the sample level from two complementary
perspectives, namely the source perspective and the target
perspective. To obtain the consensus degree on the source
perspective, we calculate the similarity between each sam-
ple in the p-th source cluster and all target cluster centers
{zt1 , ..., ztQ}:

fsp(i, q)=S(x
i
sp , ztq )=

xisp · ztq∥∥∥xisp∥∥∥ ∥∥ztq∥∥ , i ∈ [1, nsp ], q ∈ [1, Q],

(1)
where Q is the total number of clusters in the target do-
main. Subsequently, the consensus degree on the p-th source
cluster can be calculated by the proportion of samples that
achieve consensus:

CDsp =

∑nsp
i=1 I{argmaxyisp

(fsp(i, q)) = ytq}

nsp
, (2)

where yisp is the label vector of source sample xisp ,
and ytq denotes the label vector of target cluster cen-
ter sample ztq . I(·) is an indicator function, indicating
that if argmaxyisp

(fsp(i, q)) = ytq is true, the value of
I{argmaxyisp

(fsp(i, q)) = ytq} is 1, otherwise 0. Analo-
gously, the consensus degree on the q-th target cluster can
be computed by CDtq .

Definition 2 (Domain Consistency Score): The domain
consistency score DCS of this overlapped clusters is ob-
tained by the average of scores from two perspectives as
follows:

DCS(sp, tq) =
CDsp + CDtq

2
. (3)

More generally, the total domain consistency score is calcu-
lated as the mean of consensus degree for all overlapped
pairs of clusters.

To specify the number of source and target clusters P
and Q, the multiple clusterings are performed with different
P and Q to obtain the optimal number of clusters according
to the domain consistency score. Concretely, among the
various instantiations of P and Q, the domain consistency
score is calculated for each one, and then the instantiation

of P and Q with the highest score is selected for subsequent
experiments.

3 THE PROPOSED CADM SCHEME

In this section, we describe the proposed CADM algorithm
for cross-domain image steganalysis tasks in detail. The
architecture and overview of CADM are illustrated in Fig.
4.

3.1 Basic Notations and Concepts
In this article, the source and target domains are repre-
sented by subscript s and t. The datasets in the source
domain are described as Ds = {(Xsp ,ysp)}Pp=1, where P
denotes the total number of clusters in the source domain.
(Xsp ,ysp) is the sample-label data pair in the p-th source
cluster, where Xsp ∈ Rd×nsp (d-dimensional data) denotes
the sample matrix, and ysp represents the label vector.
In addition, nsp is the number of samples in the p-th
source cluster. The datasets of target domain are denoted
as Dt = {(Xtq ,ytq )}

Q
q=1, where Xtq ∈ Rd×ntq is the data

matrix for the limited labeled samples, ytq is the label vector
corresponding to the Xtq , and Q denotes the total number
of clusters in the target domain. The number of samples
in the q-th target cluster is represented as ntq . Given a
matrix B = [bij ], we denote bi as its i-th row vector and
bj as its j-th column vector. The l1-norm, l2-norm, and
Frobenius norm of the matrix B ∈ Rg×h are denoted as
‖B‖1 =

∑g
i=1

∑h
j=1 |bij |, ‖B‖2 = (

∑g
i=1

∑h
j=1 |bij |2)

1
2 , and

‖B‖F = (
∑h
j=1 ‖bj‖22)

1
2 , respectively. For a quick reference,

we summarize the commonly used notations and their
descriptions throughout the paper in Table 1.

3.2 Structural Relationship Exploration
To discover the hidden structural relationships from the
mismatched data, we propose an improved method called
spatially constrained fuzzy c-means (SCFCM) clustering.
The key insight is to fully leverage some measures to capture
variation relations between the source and target samples.
The conventional fuzzy c-means with the approximation
partitioning approach works well when the available sam-
ples obey the approximate distribution, while the spatial
clustering performance degrades when some samples are
corrupted by various cross-domain interferences. In this
case, the distribution difference across domains cannot be
accurately described so that the partition matrix always
contains imprecise (unreliable or uncertain) components
with high probability. Moreover, unreliable samples are the
main factors that lead to negative transfer, so it is necessary
to eliminate the interference in the process of exploring
structural relations. As a consequence, we consider spatial
constraints based on the minimization of a cost function that
can better explore the structural relationships of the data in
the distribution shift.

Let X = [x1
s, ...,x

ns
s ,x

1
t , ...,x

nt
t ] be the matrix formed

by a set of data samples of the vector space across dif-
ferent domains, where ns and nt denote the total number
of samples in the source and target domain respectively.
Although we have no prior information about the cluster
number c ∈ [1, ns + nt], we assume that the matrix X can
be decomposed into c fuzzy clustering to obtain a fuzzy
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Fig. 4: Illustration of the proposed CADM scheme for cross-domain image steganalysis. It can be divided into three main parts: (a) the exploration
of structural relationships is guided and conducted by the spatially constrained fuzzy c-means clustering from multiple potential candidates; (b)
the cluster consensus matching from the intra-domain and inter-domain perspectives is leveraged to make the clusters more separated and thus
identify the discriminative clusters and shared clusters; and (c) the cycle-consistent optimization and adaptation aims to optimize the steganalysis
feature extractor F by minimizing the total loss Ltotal, including structure loss Lstru, intra-domain loss Lintra, inter-domain loss Linter , and
alignment loss Lalign, to make the diverse distributions keep consistent as large as possible in the overall training procedure. In the test phase,
we first extract steganalysis features by optimal F for the given target samples. Then, the final prediction results are the average value of two
estimates ȳ = 1

2
(ŷintra + ŷinter). Best viewed in color.

TABLE 1: Descriptions of Notations Used in the Paper

Notation Description Notation Description

xi
sp

The i-th sample in the p-th source cluster W Intermediate matrix
xj
tq

The j-th sample in the q-th target cluster P Orthogonal matrix
yi
sp

The i-th label vector of the p-th source cluster ϕp Parameter vector of the feature extractor
yj
tq

The j-th label vector of the q-th target cluster ϕs Parameter vector of the structure loss
zsp Center vector of the p-th source cluster ϕd Parameter vector of the domain loss
ztq Center vector of the q-th target cluster ϕa Parameter vector of the alignment loss
nsp Number of samples in the p-th source cluster Lstru Structure loss
ntq Number of samples in the q-th target cluster Ld Domain loss
P Total number of clusters in the source domain Lalign Alignment loss
Q Total number of clusters in the target domain ρl The l-th tuning parameter to control the weight
d Data dimension kl The l-th basis kernel
c Number of clusters L Total number of basis kernels
I Identity matrix Cintra Intra-domain classifier
U Partition matrix Cinter Inter-domain classifier
V Prototype matrix λ1, λ2, λ3 Trade-off parameters of the corresponding loss terms

CDsp Consensus degree on the p-th source cluster DCS Domain consistency score
CDtq Consensus degree on the q-th target cluster SCFCM Spatially constrained fuzzy c-means clustering
PCA Principal component analysis CLS Constrained least squares

MMD Maximum mean discrepancy CCM Cluster consensus matching
DMMD Dynamic maximum mean discrepancy RKHS Reproducing kernel Hilbert space
SSDA Single source domain adaptation SGD Stochastic gradient descent
MSDA Multiple source domain adaptation SIDA Sample-imbalanced domain adaptation

QF Quality factor NA No adaptation
JRM JPEG domain rich model GSL Guide subspace learning

SRNet Steganalysis residual network IMFA Iterative multi-order feature alignment
DCTR Discrete cosine transform residual THFSL Transferable heterogeneous feature subspace learning
MEDA Manifold embedded distribution alignment ACFL Adaptive cost-sensitive feature learning

c-partition. A fuzzy c-partition can be properly described
in the form of a matrix, denoted as U, which is called
the partition matrix. The generic element of the partition
matrix, uik, represents the membership degree of the sample
point xk in fuzzy cluster i. The idea of the fuzzy c-means
algorithm is based on the minimization of the weighted sum
of squared error, which can be formulated as:

J(X,U,V;m) =
c∑
i=1

ns+nt∑
k=1

(uik)
m‖xk − vi‖2Ai

, (4)

where V = [v1,v2, ...,vc] ∈ Rd×c is the prototype matrix,
and m denotes the weighting exponent which can account
for the fuzziness of c clusters. The metric matrix Ai is used
to estimate the distance between the sample points and the
prototypes.

The D2
ik(Ai)

represents the Mahalanobis metric, which
can be calculated by a squared inner-product distance norm

as follows:

D2
ik(Ai)

= ‖xk − vi‖2Ai
= (xk − vi)

TAi(xk − vi). (5)

Since the standard fuzzy c-means algorithm relies on Eu-
clidean metric, i.e., Ai = I (identity matrix), i = 1, 2, ..., c,
and it can be omitted later in this paper. The work
in [32] reveals that the pair (U,V) can make the function
J(X,U,V;m) locally minimum only if the following con-
ditions are met simultaneously in Eq. (6) and Eq. (7).

uik = [
c∑
j=1

(
Dik

Djk
)

2
m−1 ]−1, 1 ≤ i ≤ c, 1 ≤ k ≤ ns + nt, (6)

and

vi =

∑ns+nt
k=1 (uik)

mxk∑ns+nt
k=1 (uik)m

, 1 ≤ i ≤ c. (7)

Let W ∈ Rd×(ns+nt) and P ∈ Rd×d be intermediate and
orthogonal matrices respectively. We consider the transfor-
mation shown in Eq. (8).

W = PX. (8)
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Algorithm 1 Spatially Constrained Fuzzy C-Means Cluster-
ing
Input: data matrix X, initial partition matrix U0, maximum
error parameter α, maximum iteration number MaxIter;
Output: updated partition matrix U, updated prototype
matrix V;

1: Randomly generate the initial partition matrix U0 = [u0
ik];

2: Calculate the initial prototype matrix V0, according to Eq.
(7), using U0;

3: Iteration T = 1;
4: For 1 ≤ k ≤ ns + nt, solve Eq. (10) to obtain U = [uik];
5: Update V, using U;
6: If maxik|uik − u0

ik| > α and T < MaxIter;
(a) U0 ← U; (b) T ← T + 1; (c) Go to step 4;

7: Return U and V.

Replacing xk by Pxk in Eq. (7), we can obtain v′i. Thus,
V′ = PV. Then, Eq. (4) can be transformed into the
following form by setting m = 2:

J(W,U,V′) = ‖W −V′U‖2F = ‖P(X−VU)‖2F
= J(X,U,V).

(9)

In particular, if the matrix P performs a principal com-
ponent analysis (PCA) on the sample matrix X, we can
alternatively calculate U by means of irrelevant W, thus
preventing the clustering process from being influenced by
potential multicollinearity problems among selected orig-
inal features. Furthermore, in the actual experiment, we
consider using variance-adjusted prediction of the sample
matrix X to estimate the partition matrix U. In this way,
our improved fuzzy clustering method can handle high-
dimensional data with less computation.

The optimization of J(X,U,V) in Eq. (9), given V, is
equivalent to minimizing

‖xk −Vuk‖22, 1 ≤ k ≤ ns + nt, s.t.‖uk‖1 = 1,

0 ≤ uik ≤ 1, 1 ≤ i ≤ c.
(10)

This means that the partition matrix U can be obtained by
solving a set of the constrained least squares (CLS) problems
with both equality and inequality constraints. Formally,
based on the spatially constrained fuzzy c-means clustering,
we define the structure loss as:

Lstru(xk,ϕp,ϕs) =
1

ns

c∑
i=1

ns∑
k=1

[J(xks ,uk,vi)]
2

+
1

nt

c∑
i=1

nt∑
k=1

[J(xkt ,uk,vi)− 1]2,

(11)

where ϕp denotes the parameter vector of the feature ex-
tractor, and ϕs is the parameter vector of the structure
loss associated with uk and vi. The procedure of SCFCM
clustering is summarized in Algorithm 1. Note that in order
to improve the search efficiency, we adopt a stop rule in
actual application, that is, stopping the search once the
consistency score drops continuously, and fixing the c once
it keeps a certain value after a specific number of times. Its
effectiveness has been proved experimentally in Section 5.1.

3.3 Cluster Consensus Matching
The main challenge of cross-domain knowledge transfer lies
in how to separate reliable samples from unreliable samples
across different distributions. Unlike the previous work [19]

on identifying reliable samples at sample level, the goal
of this paper is to mine reliable and unreliable samples
simultaneously with discriminative clusters. Accordingly, a
crucial question naturally arises: how to associate reliable
clusters with similar distributions from both domains? To
achieve this, we propose a cluster consensus matching
(CCM) mechanism to link reliable samples from different
clusters by mining consistency at the distribution level.

As shown in Fig. 4, for each cluster center, we calculate
the intra-domain and inter-domain distance to search for the
matched cluster center in the other domain. If two clusters
achieve consensus, i.e., both serve as the matched centers
for each other simultaneously, then such a pair of clusters
is regarded as reliable clusters. The intuition behind is that
reliable clusters tend to have larger intra-domain distances
but smaller inter-domain distances, which is beneficial to
perform the cluster consensus matching. In addition, to
guarantee this assumption, the domain consistency evalua-
tion based on sample-level consensus is used to improve the
effectiveness of CCM, which has been described in detail in
Section 2.3.

The maximum mean discrepancy (MMD) is a distance
function defined between probability distributions in a par-
ticular metric space. We describe an improved MMD metric
which is called the dynamic MMD (DMMD), to measure the
similarity by calculating the distance between the source
and target distributions. Moreover, each source domain is
given a weight based on minimizing a distance measure
between the probability density functions of the source and
target domains.

The MMD is defined as the squared distance between
the means of different data distributions in a reproducing
kernel Hilbert space (RKHS) using function φ(·) and can be
formulated as:

MMD2(sp, tq) = sup
‖φ‖H≤1

‖Exsp∼sp [φ(xsp)]

−Extq∼tq [φ(xtq )]‖
2
H,

(12)

where Exγ∼γ [·] describes the expectation with regard to the
distribution γ, γ ∈ {sp, tq}(p ∈ [1, P ], q ∈ [1, Q]), and
‖φ‖H ≤ 1 represents a series of functions in the unit ball
of a RKHS H. Dsp = {xisp}

nsp
i=1 and Dtq = {xjtq}

ntq
j=1 denote

the sample sets extracted from the distributions sp and tq ,
respectively. An empirical evaluation method of MMD is
presented as:

MMD2(Dsp , Dtq ) = ‖
1

nsp

nsp∑
i=1

φ(xisp)−
1

ntq

ntq∑
j=1

φ(xjtq )‖
2
H,

(13)
where φ(·) represents the feature map corresponding to
the kernel map k(xsp ,xtq ) =

〈
φ(xsp), φ(xtq )

〉
. The kernel

k(xsp ,xtq ) is usually calculated by a convex combination of
basis kernels as follows:

k(xsp ,xtq ) =
L∑
l=1

ρlkl(xsp ,xtq ), s.t.ρl ≥ 0,
L∑
l=1

ρl = 1, (14)

where ρl is the l-th tuning parameter, kl(xsp ,xtq ) denotes
the l-th basis kernel, and L represents the total number of
basis kernels.

However, the traditional MMD is not robust to the class
weight bias, which can be interpreted by further decomposi-
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tion of psp(xsp) and ptq (xtq ) into conditional distributions,
pγ(xγ) = p(yγ=εc)p(xγ |yγ=εc) + p(yγ=εs)p(xγ |yγ=εs)

= wεcγ p(xγ |yγ=εc) + wεsγ p(xγ |yγ=εs),
(15)

where εc and εs represent the cover samples and the stego
samples, respectively. Specifically, wεcsp = p(ysp = εc) and
wεssp = p(ysp = εs) represent the prior probabilities (i.e.,
weights and biases) of the p-th source cluster for the cover
class and the stego class, respectively.

To suppress the influence of class weight bias across
domains, we construct a reference source cluster distri-
bution psp,βε(xsp) to compare the difference between the
source and target clusters, where ε denotes the category of
samples. For this purpose, we ensure that psp,βε(xsp) has
the same class weight as the target cluster, but maintains the
class conditional distribution in the p-th source cluster. Let
βε =

wεtq
wεsp

, we can define psp,βε(xsp) to alleviate the effect of
class weight bias as follows:

psp,βε(xsp)=βεcw
εc
spp(xsp |ysp=εc)+βεsw

εs
spp(xsp |ysp=εs).

(16)

Therefore, the empirical equation of DMMD between the
source and target conditional distributions can be expressed
as:

DMMD2(Dsp , Dtq ) = ‖
1∑nsp

i=1 βyisp

nsp∑
i=1

βyispφ(x
i
sp)

− 1∑ntq
j=1 βyjtq

ntq∑
j=1

βyjtq
φ(xjtq )‖

2
2,

(17)

Because the formulation of DMMD in Eq. (17) is defined
according to the whole source and target data, it is unsuit-
able for achieving the neural network-based deep cluster
adaptation through mini-batch stochastic gradient descent
(SGD). Assuming nsp = ntq = τ , we give an approximation
of the linear time complexity for DMMD in Eq. (18).

DMMD2(Dsp , Dtq ) =
2

τ

τ
2∑
i=1

f(ri), (18)

where ri is a quad-tuple operator defined as ri =
(x2i−1
sp ,x2i

sp ,x
2i−1
tq ,x2i

tq ). Then, f(ri) can be represented as:

f(ri) = βy2i−1
sp

k(x2i−1
sp ,x2i

sp) + βy2ispk(x
2i
tq ,x

2i−1
tq )

−βy2i−1
sp

k(x2i−1
sp ,x2i

tq )− βy2ispk(x
2i
sp ,x

2i−1
tq ).

(19)

The approximation is in summation form and thus can
be easily optimized by mini-batch SGD. Specifically, we
define the domain loss based on DMMD, which can be
represented as:

Ld(ϕp,ϕd) =
1

2

P∑
p=1

P∑
p′=1(p 6=p′)

DMMD(Dsp , Dsp′ )

+
1

2

Q∑
q=1

Q∑
q′=1(q 6=q′)

DMMD(Dtq , Dtq′ )

+
P∑
p=1

Q∑
q=1

DMMD(Dsp , Dtq ),

(20)

where ϕd denotes the parameter vector of the domain loss
associated with the input distributions. The first two terms
in Eq. (20) represents the intra-domain loss Lintra and the

last term measures the inter-domain loss Linter. In this way,
DMMD quantitatively measures feature distributions across
different domains to select suitable source knowledge, thus
can effectively promote the positive transfer of the useful
source data and control the negative transfer of the redun-
dant source data.

Empirically, we find that cluster consensus matching
tends to divide the samples from similar distributions into
multiple clusters at the beginning, which is also called
as over-clustering. The reason is that in order to obtain
a higher consistency score, more precise and fine-grained
matching between clusters is required. Therefore, at the
beginning, cluster consensus matching is more inclined to
small clusters with stable samples (i.e. less affected by the
distribution shift), which may temporarily make the number
of clusters much larger than the final one. With the progress
of deep adaptation and alignment, the number of clusters
gradually decreases and converges to a finite fixed number
after a period of training.

3.4 Cycle-Consistent Optimization and Adaptation

To improve the generalization ability, we present the
intra-domain classifier Cintra to exploit useful information
among source domains for knowledge transfer. Since the
inter-domain classifier Cinter is only trained on the loss
between the source and target domains, the knowledge from
source domains is likely to be redundant and may easily
cause negative transfer. Intuitively, the learning process for
Cintra and Cinter can be regarded as the discovery and
integration of the transferable knowledge across domains,
thus they play a prominent role in reducing the alignment
loss. In addition, we introduce the joint adaptation layer [33]
to ensure the mutual learning between classifiers Cintra and
Cinter through knowledge adaptation. The calculation of
alignment loss based on the above analysis can be written
as:

Lalign(ϕp,ϕd,ϕa) =
1

(ns + nt)2

ns+nt∑
k=1

ns+nt∑
k′=1

‖pinter(y|xk)

−pintra(y|xk′)‖22,
(21)

where pinter(y|xk) and pintra(y|xk′) respectively denote the
predicted category distribution of the sample data by the
classifier Cinter and Cintra, and ϕa is the parameter vector
of the alignment loss associated with the classifiers.

In order to minimize the total loss, a cycle-consistent op-
timization and adaptation strategy is proposed to make the
mismatched distributions close. Therefore, our ultimate goal
can be transformed into solving the following optimization
problem of the objective function [34]:

min
ϕp,ϕs,ϕd,ϕa

λ1Lstru(xk,ϕp,ϕs) + λ2Ld(ϕp,ϕd)

+λ3Lalign(ϕp,ϕd,ϕa),
(22)

where λ1, λ2, and λ3 represent trade-off parameters for the
corresponding loss functions, respectively.

We first exploit the SCFCM to explore the structural
relationships of mismatched data, then design the DMMD to
measure the distribution discrepancy across different clus-
ters, and finally develop the cycle-consistent optimization
and adaptation to promote the generalization ability and
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Algorithm 2 Consensus-Clustering-Based Automatic Distri-
bution Matching

Input: source data Ds = {(Xsp ,ysp)}Pp=1, target data
Dt = {(Xtq ,ytq )}

Q
q=1, steganalysis feature extractor F ,

classifiers {Cintra,Cinter}, trade-off parameters {λ1, λ2, λ3},
parameter vectors {ϕp,ϕs,ϕd,ϕa};
Output: final steganalysis feature extractor F , predicted
labels ŷintra and ŷinter ;

1: Initialize model parameters and extract feature vectors;
2: for k = 1→ N do;
3: Calculate the structure loss Lstru to explore the intrinsic

relationships of mismatched data by Eq. (11);
4: Estimate the domain loss Ld based on DMMD to achieve

the cluster consensus using Eq. (20);
5: Obtain the prediction value ŷintra based on the intra-

domain loss Lintra;
6: Obtain the prediction value ŷinter based on the inter-

domain loss Linter ;
7: Compute the alignment loss Lalign according to ŷintra

and ŷinter by Eq. (21);
8: while not converge do
9: for each batch do

10: Minimize the total loss Ltotal through Eq. (22);
11: end for
12: Update the parameters and steganalysis feature extrac-

tor F .
13: end while
14: end for

prediction accuracy for cross-domain steganography detec-
tion. The most important part of our proposed CADM lies
in the effectiveness of cluster partitioning and cluster match-
ing, with performance relying on the SCFCM and CCM.
Furthermore, the total loss in Eq. (22) is optimized with a
gradient reversal layer (GRL) [35], which can reverse the
gradient of the loss function when backpropagating to the
steganalysis feature extractor F . These steps are repeated
until the convergence conditions are satisfied, and thus
the various parameters of CADM scheme are updated to
overcome the distribution discrepancy between the training
data and test data. The complete procedure of CADM is
summarized in Algorithm 2.
3.5 Computational Complexity
The computational complexity of our proposed algorithm
consists of the following three major parts:

1) Using the SCFCM clustering algorithm to explore
the structural relationships, the time-consuming steps
mainly include the PCA on the sample matrix and the
solution of CLS, which takes O((n2s + n2t )d + n2sn

2
tm)

time to obtain the fuzzy c-partition.
2) The cluster consensus matching is accomplished by

measuring the distribution distance between the source
and target clusters, whose time complexity is O( 12 (P +
Q)2T1) to calculate the intra-domain loss and the inter-
domain loss, while T1 is the number of iterations of
maintaining the consistency.

3) The objective function in Eq. (22) is implemented to
perform the cycle-consistent optimization and adap-
tation, which takes O((ns + nt)(T2 + log(ns + nt)))
time to obtain the optimal result, and T2 is the number
of iterations that meet the convergence condition in
Algorithm 2.

We assume m, d, P,Q, T1, T2 � ns+nt, the overall com-
putational complexity of this algorithm can be simplified as
O(n2sn

2
tm + (ns + nt)log(ns + nt)). Notably, it can be seen

from the results that CADM is different from those existing
algorithms whose computational complexity will increase
dramatically with the increase of feature dimensions. The
computational complexity of the SCFCM clustering is re-
lated to the feature dimensions, while the complexity of the
cluster consensus matching and the cycle-consistent distri-
bution alignment is independent of the feature dimensions.
Moreover, the last two parts are major components of over-
all computational complexity. As a result, the complexity of
CADM is very little affected by the growth of the feature
dimensions, which is also an advantage that distinguishes
from other algorithms.

4 EXPERIMENTS

4.1 Experimental Setup
1) Datasets: The images used in our experiments are

taken from the BOSSbase 1.01 database [36] and the BOWS-
2 database [37]. Each of the databases is composed of 10,000
pieces of portable gray map (PGM) images with a resolution
of 512×512 pixels. In order to reduce computing burden,
we resize the input images to the size of 256×256. When
training the steganalysis networks, all images are separated
into three non-overlapping groups, namely 50% for the
training set, 10% for the validation set, and 40% for the
testing set. We find the optimal hyperparameters according
to the performance on the validation set, and then assess the
effectiveness of the proposed CADM scheme on the testing
set.

2) Steganographic Algorithms: The datasets are JPEG com-
pressed with different quality factors (QF) of 75, 85, and 95
to obtain the cover images. We modify the DCT coefficients
in the JPEG domain to embed secret information based on
classical non-adaptive and adaptive steganographic meth-
ods, including nsF5 [1], J-UNIWARD [2], UERD [3], and
J-MiPOD [6]. In the following text, we apply simplified
symbols ns, J, U, and M to describe the nsF5, J-UNIWARD,
UERD, and J-MiPOD steganographic algorithms, respec-
tively. Since the performance of steganography detection is
closely related to the amount of payloads, we use a series of
relative payloads of 0.1, 0.2, and 0.3 bits per nonzero ac DCT
coefficient (bpnzac) to explore their impact on cross-domain
steganalysis.

3) Scenario Settings: We consider the following four sce-
nario settings: (1) no adaptation (NA): it represents to train
with the source domain and test using the target domain di-
rectly; (2) single source domain adaptation (SSDA): it learns
meaningful representations from a single source domain to
promote the performance of classification and detection in
the target domain; (3) multiple source domain adaptation
(MSDA): MSDA is an extension of SSDA, which captures
transferable knowledge from multiple source domains for
the recognition in the target domain; (4) sample-imbalanced
domain adaptation (SIDA): it performs the match and adap-
tation operation on the training set, where the numbers
of cover and stego samples have significant differences, to
achieve cross-domain steganalysis.

4) Implementation Details: Our proposed framework and
loss function are provided in Section 3. In the following, we
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give the implementation details of CADM during training
the cross-domain steganalysis model. We pre-train and fine-
tune the SRNet on the BOSSbase and BOWS-2 datasets as
the initial steganalysis feature extractor, which can capture
the crucial cues caused by steganographic modifications.
Due to the limitation of GPU memory and hardware re-
sources, we utilize a batch size of 16 images per domain
for all iterations. All layers are initialized by the Xavier
initializer [38] to ensure the magnitude of the gradients
approximately the same. In the training phase, we adopt
Adam optimizer with a weight decay 2 × 10−4. For the
BOSSbase, the initial learning rate is set to 10−4 which is
scaled by a factor of 10 at 6k iterations. For the experiments
on the BOWS-2, the initial learning rate is set to 10−3, and
the learning rate is decayed by a factor of 0.1 at 1k itera-
tions. According to the above settings, our proposed model
is trained to minimize the total loss function mentioned
in Section 3.4. After the cross-domain steganalysis model
is well trained, the cross-domain detection results can be
obtained by Algorithm 2.

5) Evaluation Metrics: The accuracy Acc and F1-measure
F1 [14] of the steganography detection model on the testing
set are employed as the evaluation criteria. The expression
of Acc is as follows:

Acc =
Ncorrect
Ntesting

, (23)

where Ncorrect is the number of samples correctly identified
by the steganography detection model, andNtesting denotes
the total number of samples in the testing set.

The F1-measure is defined as the harmonic mean of
recall (Rec) and precision (Pre). Particularly, it is a widely
adopted metric to estimate the performance of classifiers in
imbalanced data, with higher scores indicating better per-
formance. The relevant calculation equations are as follows:

Rec =
TP

TP + FN
, (24)

Pre =
TP

TP + FP
, (25)

F1 = 2 ∗ Pre ∗Rec
Pre+Rec

, (26)

where TP is the number of stego samples correctly iden-
tified by steganalysis model, FP denotes the number of
cover samples incorrectly detected as stego samples, and
FN represents the number of stego samples incorrectly
identified as cover samples.

4.2 Comparison with Prior Arts
To evaluate the proposed scheme, our CADM is compared
with the following recent state-of-the-art baselines on mis-
matched steganographic datasets. These methods can be
divided into two categories depending on whether they
are designed for matched or mismatched distribution con-
ditions. 1) Effective steganalysis approaches for matched
scenarios: JPEG domain rich model (JRM) [9], discrete cosine
transform residual (DCTR) [10], and steganalysis residual
network (SRNet) [11]. 2) Distribution adjustment and adap-
tation schemes for mismatched scenarios: manifold embed-
ded distribution alignment (MEDA) [39], guide subspace
learning (GSL) [40], iterative multi-order feature alignment

(IMFA) [13], transferable heterogeneous feature subspace
learning (THFSL) [12], adaptive cost-sensitive feature learn-
ing (ACFL) [14], and multiperspective progressive structure
adaptation (MPSA) [19].
4.3 Experimental Results and Analysis
We compare our scheme with previous state-of-the-arts
methods in four cases, i.e., NA, SSDA, MSDA, and SIDA.
For NA cases, we select the classical steganalysis approach
as a baseline to explore the impact of mismatched data on
its performance. For SSDA scenarios, we consider the mis-
matched steganographic algorithm (MSA) and mismatched
quality factor (MQF) respectively. In addition, we also con-
duct cross-dataset experiments to evaluate the performance
in the single source domain case. For MSDA settings, we
perform a set of experiments to understand how the number
of source domains influences the detection performance. For
SIDA situations, we first conduct baseline experiments on
imbalanced data distribution in non-cross-domain condi-
tions, and then further perform experiments on imbalanced
data distribution in cross-domain conditions.

1) Results on Mismatched Steganographic Algorithm (MSA):
The following experimental results reveal that the proposed
CADM for the MSA problem is reasonable and feasible. The
source and target samples have the same quality factor and
payload rate, but the steganographic methods are different
in the training and testing sets. Specifically, the BOSSbase
dataset is applied to produce cover samples using QF = 75
or 95, and subsequently nsF5, UERD or J-MiPOD steganog-
raphy techniques are employed to generate stego samples
with a payload rate of 0.3 bpnzac. The detailed experimen-
tal results are given in Table 2. Comparing no adaptation
methods and domain adaptation approaches, it can be seen
that on average the domain adaptation approaches achieve
better performance, which is obviously different from the no
adaptation situation. Notably, for the baseline method with-
out using adaptation strategy (i.e., JRM-NA), our proposed
CADM improves the average accuracy from 63.2% to 77.0%.
This is because the adaptation operations can narrow the
distribution gap to some extent. Moreover, CADM can fully
explore the combination of diverse clusters and perfectly
perform the cluster matching through the consensus cluster-
ing to achieve better cross-domain detection performance.

TABLE 2: Comparison of Detection Accuracy on the Mis-
matched Steganographic Algorithm Setting
Source Target JRM-NA MEDA GSL IMFA THFSL MPSA Ours

75-U 75-ns 0.787 0.794 0.812 0.811 0.841 0.904 0.929
75-ns 75-U 0.679 0.692 0.721 0.709 0.718 0.789 0.814
75-U 75-M 0.520 0.541 0.574 0.561 0.583 0.641 0.659
75-M 75-U 0.593 0.602 0.638 0.652 0.664 0.725 0.764
95-U 95-ns 0.822 0.834 0.865 0.843 0.876 0.940 0.938
95-ns 95-U 0.627 0.648 0.667 0.666 0.664 0.739 0.769
95-U 95-M 0.511 0.529 0.534 0.519 0.512 0.538 0.563
95-M 95-U 0.616 0.632 0.651 0.664 0.693 0.762 0.785
75-ns 75-M 0.524 0.528 0.540 0.538 0.551 0.619 0.641
75-M 75-ns 0.685 0.703 0.729 0.737 0.762 0.843 0.872
95-ns 95-M 0.518 0.523 0.526 0.521 0.536 0.541 0.567
95-M 95-ns 0.702 0.728 0.769 0.798 0.831 0.935 0.943

Average 0.632 0.646 0.669 0.668 0.686 0.748 0.770

2) Results on Mismatched Quality Factor (MQF): The per-
formance of the proposed scheme for the MQF problem is
investigated by the following experiments. We select cover
samples with the QF = {75, 85, 95} from the BOSSbase
dataset and then the J-UNIWARD or UERD steganography
methods are used to generate stego samples with a payload
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rate of 0.2 bpnzac. The detection results are reported in Table
3, from which we observe that MPSA ranks second (70.7%)
on average, but our proposed CADM is still 2.4% higher
than MPSA and thus achieves state-of-the-art performance.
Concretely, except for a few special cases, we can find that
our CADM scheme outperforms the other methods on all
the MQF tasks, and the accuracy of our method is 11.8%
higher than that of JRM-NA. The reason may be that the
exploration of the latent transferable knowledge through
the intra-domain and inter-domain cluster consensus in this
paper can automatically match inconsistent distributions in
cross-domain steganalysis scenarios.

TABLE 3: Comparison of Detection Accuracy on the Mis-
matched Quality Factor Setting
Source Target JRM-NA MEDA GSL IMFA THFSL MPSA Ours

75-U 85-U 0.646 0.675 0.686 0.674 0.623 0.745 0.792
85-U 75-U 0.654 0.668 0.633 0.671 0.673 0.748 0.780
75-U 95-U 0.579 0.614 0.622 0.603 0.539 0.671 0.694
95-U 75-U 0.662 0.690 0.672 0.688 0.657 0.751 0.793
75-J 85-J 0.613 0.652 0.655 0.643 0.627 0.718 0.695
85-J 75-J 0.605 0.647 0.598 0.640 0.621 0.722 0.779
75-J 95-J 0.544 0.583 0.564 0.645 0.531 0.639 0.667
95-J 75-J 0.623 0.639 0.631 0.633 0.693 0.682 0.724
85-U 95-U 0.620 0.652 0.663 0.655 0.562 0.708 0.731
95-U 85-U 0.601 0.648 0.659 0.632 0.606 0.729 0.703
85-J 95-J 0.588 0.621 0.628 0.609 0.548 0.682 0.696
95-J 85-J 0.565 0.609 0.615 0.598 0.591 0.693 0.723

Average 0.608 0.642 0.636 0.641 0.606 0.707 0.731

3) Results on Cross-Dataset Experiments with BOSSbase
and BOWS-2: We adopt two different settings to evaluate
the effectiveness of the proposed CADM in cross-dataset
scenarios with BOSSbase and BOWS-2. In the first setting,
the samples with a certain QF = {75, 95} in BOSSbase
are used as the source set, while the samples with the
same QF in BOWS-2 are employed as the target set. In the
second setting, the source and target sets are swapped. The
stego samples are obtained by non-adaptive and adaptive
steganography methods with a payload rate of 0.3 bpnzac.
The experimental results are illustrated in Fig. 5, from which
we can see that the proposed CADM outperform the state-
of-the-art methods in all cases. It is obvious that the de-
tection results are significantly better under 75-ns condition
than others, while the detection results are very poor under
95-M condition. The reason is that nsF5 is a conventional
non-adaptive steganography algorithm with low security,
which makes it relatively easy to detect. However, J-MiPOD
is a modern adaptive steganography algorithm with strong
concealment, which makes it extremely difficult to detect.

Fig. 5: Comparison of different methods on cross-dataset settings with
BOSSbase and BOWS-2.

4) Evaluation Study of Multiple Source Domain Adaptation:
To further demonstrate the effectiveness of our proposed
CADM, we conduct a series of experiments to reveal the
relationship between the number of source domains and
detection performance. The experimental data are collected

from six different domains with the payload rate of 0.3
bpnzac, including 75-ns, 75-J, 75-U, 95-ns, 95-J and 95-U. In
order to guarantee that the single source domain methods
can be performed under the condition of multiple source
domain scenarios, we adopt the domain selection strategy
as a preprocessing step according to reference [41]. In this
way, we record them as M-MEDA, M-GSL and M-THFSL
in the subsequent experiments. From Fig. 6, it shows the
best detection results with various target domains that can
be achieved when the number of latent source domains is
set as two or three in almost all cases. The reasons can be
attributed to the following two aspects. On the one hand, an
appropriate increase in the number of latent source domains
can boost the adaptation by exploring complementary in-
formation among different domains. On the other hand, an
excessive number of latent source domains may introduce
interference information and cause negative transfer, which
will lead to the degradation of performance in cross-domain
steganalysis. Table 4 shows the results of different target
domains on their best performance. From the results, we
can also see that the proposed CADM is superior to several
other state-of-the-art methods in each case.

TABLE 4: Cross-domain Steganalysis Accuracy (%±STD)
with Different Methods on Four Target Datasets

Compared Methods 75-ns 75-U 95-U 95-J

DCTR-NA 83.9±2.9 70.7±4.6 67.1±2.5 64.8±2.7
M-MEDA 84.6±2.0 73.3±2.8 67.9±0.9 67.0±1.6

M-GSL 87.8±1.2 74.8±1.9 66.4±1.7 67.3±2.3
M-THFSL 83.4±2.5 73.1±3.2 70.3±1.4 68.5±3.8

MPSA 93.2±1.7 78.9±2.4 77.5±2.1 75.5±1.9
Ours 95.7±1.4 80.5±2.1 79.6±0.8 77.2±1.1

5) Detection Performance on Imbalanced Data Distribution
in Non-Cross-Domain Conditions: To evaluate the perfor-
mance of our proposed scheme and other methods under
imbalanced data distribution, we conduct a series of ex-
periments with varying imbalanced ratio using the BOSS-
base dataset on non-cross-domain scenarios. Since stego
samples are generally less than cover samples in practical
applications, the number of stego samples is set as 500
while the number of cover samples is selected from the
set {500,1000,...,5000}. Accordingly, we can obtain ten train-
ing datasets with different degrees of imbalanced ratios.
Moreover, the testing samples are randomly collected from
the remaining datasets. Due to the fact that F1-measure is
a more appropriate performance evaluation criteria than
accuracy in the imbalanced distribution. Therefore, Fig. 7
shows the detection performance using F1-measure. The
experimental results indicate that: (1) the proposed CADM
is significantly superior to other counterpart methods in
the F1-measure; and (2) the performance of the method
(i.e., ACFL and CADM) specifically designed for addressing
the imbalanced data distribution is relatively stable in the
face of various imbalanced ratios, while the performance of
other approaches decreases dramatically with the increase
of the proportion of cover and stego samples. The reason is
that the limited information and uneven distribution of the
minority class makes it difficult to detect, which may lead
to misclassification and degradation of model performance.
However, our proposed CADM can automatically match
the inconsistent distribution to alleviate the influence of the
imbalanced distribution.
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Fig. 6: Accuracy of cross-domain steganalysis with different number of source domains under the condition of MSDA.

Fig. 7: Performance of steganography detection with different imbalanced ratios under non-cross-domain conditions. (a) 75-ns-0.1: using nsF5
with QF = 75 and embedding rate of 0.1 bpnzac. (b) 85-J-0.2: using J-UNIWARD with QF = 85 and embedding rate of 0.2 bpnzac. (c) 95-U-0.3:
using UERD with QF = 95 and embedding rate of 0.3 bpnzac.

6) Detection Performance on Imbalanced Data Distribution
in Cross-Domain Conditions: In order to further verify the
ability of the proposed CADM to handle the mismatched
distributions, we perform more complex experiments on im-
balanced data distribution in cross-domain conditions. We
adopt mismatched steganographic algorithm and quality
factor to construct the source domain and target domain,
where the imbalanced ratio of the stego sample and the
cover sample is set to 1:10 in the source training dataset.
Table 5 shows the F1-measure results on the imbalanced
training data in cross-domain steganography detection sce-
narios. It can be found that our scheme is obviously bet-
ter than other comparison methods. Although in scenarios
where there are only inconsistent or imbalanced distribu-
tions (i.e., domain inconsistency or data imbalance issues),
some comparison methods have achieved promising detec-
tion results. However, in more complex scenarios where
both problems exist at the same time, the performance of
comparison methods is severely degraded. The reason may
be that these methods have limited ability to deal with
the distribution shifts and cannot automatically perform
distribution matching. In addition, our proposed CADM
can gain about 3.2% average F1-measure improvement com-
pared with the second best method, which demonstrates
that mining and aligning the suitable components based on
consensus clustering can achieve superior performance in
mismatched steganalysis tasks.

TABLE 5: Results of Steganalysis Using F1-measure on Im-
balanced Data Distribution under Cross-Domain Conditions
Source Target SRNet-NA GSL IMFA THFSL ACFL MPSA Ours

75-U 85-ns 0.632 0.651 0.634 0.659 0.672 0.703 0.746
85-ns 75-U 0.535 0.537 0.554 0.562 0.583 0.634 0.673
75-U 85-J 0.518 0.526 0.529 0.548 0.560 0.591 0.629
85-J 75-U 0.506 0.502 0.517 0.531 0.529 0.574 0.603
85-U 75-ns 0.613 0.658 0.691 0.684 0.687 0.738 0.752
75-ns 85-U 0.501 0.531 0.528 0.526 0.524 0.592 0.625
85-U 75-J 0.539 0.554 0.563 0.543 0.562 0.587 0.604
75-J 85-U 0.516 0.525 0.529 0.547 0.563 0.621 0.653

75-ns 85-J 0.531 0.523 0.540 0.562 0.564 0.595 0.637
85-J 75-ns 0.539 0.561 0.584 0.596 0.581 0.629 0.662

85-ns 75-J 0.527 0.549 0.536 0.528 0.542 0.573 0.611
75-J 85-ns 0.624 0.678 0.664 0.687 0.697 0.728 0.749

Average 0.548 0.566 0.572 0.581 0.589 0.630 0.662

5 ANALYSIS AND DISCUSSION

5.1 Ablation Study

We train the model on three representative tasks (i.e., Task1:
85-J→75-M, Task2: 75-U→95-ns, and Task3: 75-U&85-M&95-
ns→75-J) with the payload rate of 0.2 bpnzac from the
BOWS-2 dataset to perform ablation analysis, where we
investigate how the influence of different components on
the performance of the proposed scheme from various per-
spectives.

Effect of Domain Consistency Score. To better inves-
tigate domain consistency score, we carry out a series of
experiments to understand its mechanism. We consider the
consistency scores of the source domain, the target domain,
and the entire domain, which are denoted by the symbols
DCSs, DCSt, and DCS, respectively. As shown in Fig.
8(a), as the number of clusters c increases, the curves of
DCSs and DCSt show the same trends, that is, DCSs
and DCSt both decrease. However, the consistency score
of the entire domain, which consists of the source domain
and the target domain, is gradually increasing. The reason
can be explained in the following two aspects. On the one
hand, with the increase of c, the source and target samples
are scattered to generate more and smaller clusters, which
leads to a decrease in DCSs and DCSt. On the other hand,
as more fine-grained clusters are formed, the distribution
matching can be better implemented between the source
and target clusters, which explains the increase of DCS.

Effect of Cluster Consensus Matching. In order to
reveal the characteristics of cluster consensus matching in
the training process, we record the change of the domain
consistency score as the number of iterations increases. In
Fig. 8(b), we visualize the evolution of the domain con-
sistency score as the training progresses. As expected, the
domain consistency score reaches a steady state after the
initial several iterations, which implies that our scheme can
quickly find the optimal number of clusters. In addition,
this indicates that a search for the number of clusters is only
required in the early phase.

Effect of SCFCM Clustering. Fig. 8(c) shows the evo-
lution of the cluster number c during training under three
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Fig. 8: Impact assessment of our proposed scheme. (a) The variation curve of domain consistency score with the number of clusters c on 85-J→75-
M (0.2 bpnzac). (b) The evolution of the number of clusters c as training progresses. (c) The evolution of domain consistency score as training
progresses.

Fig. 9: Influence of parameters λ1, λ2 and λ3 on the performance of CADM, respectively.

tasks. In these experiments, we do not implement the pro-
posed stop rule (see Section 3.2). As illustrated in the figure,
the number of clusters gradually converges to the stationary
and optimal value after several rounds of searches, which is
similar to the convergence trend of the domain consistency
score in Fig. 8(b). This also means that the search for c is
only necessary in the initial stage of training, which proves
that the proposed stop rule used to shorten the training time
is reasonable.

Effect of Different Modules. We further conduct a series
of experiments to evaluate the contribution of each module
in our proposed scheme. The effectiveness is investigated by
changing one module while fixing the others. In our exper-
iments, the influence of different modules can be estimated
by three major constraint terms, including the structure loss
(SL) term, domain loss (DL) term, and alignment loss (AL)
term. The experiment results are reported in Table 6 by using
the proposed model without (w/o) the SL term, without
(w/o) the DL term and without (w/o) the AL term. From
the results, we observe that the detection performance can
be boosted by using the constraint terms with SL, DL and
AL, which also validates the feasibility of CADM in cross-
domain steganalysis.

TABLE 6: Influence of Different Modules on Three Repre-
sentative Tasks by Deleting One Module While Fixing the
Others

Detection Tasks CADM w/o SL w/o DL w/o AL
Task1 0.679 0.564 0.590 0.634
Task2 0.886 0.792 0.801 0.822
Task3 0.743 0.653 0.676 0.698

Average 0.769 0.670 0.689 0.718

5.2 Parameter Sensitivity

We conduct comprehensive experiments to observe the ef-
fect of parameters λ1, λ2, and λ3 on the performance of
our scheme. The results on 75-U→95-ns (0.1 bpnzac), 85-
J→85-U (0.2 bpnzac), and 95-M→75-M (0.3 bpnzac) tasks
are presented in Fig. 9. The impact of parameters on the
performance of CADM is analyzed by utilizing the control

variable method. Fig. 9(a) shows the average accuracy using
different values of λ1 on three representative tasks, where
λ2 = 0.5 and λ3 = 0.35. It can be seen from the experimental
results that with the increase of λ1, the performance of the
scheme enhances in the initial phase and then decreases pro-
gressively. To be specific, the best performance is achieved
when λ1 is set to 0.15. Fig. 9(b) provides the average accu-
racy with different values of λ2 under the condition of λ1
= 0.15 and λ3 = 0.35. From the results, when λ2 is greater
than 0.3, the performance almost remains at a desired level.
Fig. 9(c) gives the average accuracy using different values
of λ3 with the setting of λ1 = 0.15 and λ2 = 0.5. Within a
wide range of λ3 ∈ [0.2, 0.4], the performance of CADM
achieves the best and only varies in a narrow range, which
indicates that our scheme is robust to the selection of λ3 in
this interval.

5.3 Convergence Evaluation
The convergence of the CADM scheme is evaluated by
performing extensive experiments on BOSSbase (i.e., 95-
J→75-J) and BOWS-2 (i.e., 75-U→95-ns and 75-U&85-J→95-
U). Fig. 10(a) describes the reduction of MMD distance
between the source and target domain during the training
process, which demonstrates that the discrepancy across
different domains can be effectively eliminated by our
scheme. Fig. 10(b) presents the MMD distance between the
cover and stego classes. We find that the value of MMD
increases monotonically with cycle-consistent iterations. In
other words, our scheme can improve the discrimination
of representations in cross-domain steganalysis. Moreover,
the response curve of MMD distance can achieve the steady
state after a certain number of iterations, which proves that
the proposed CADM can converge.

5.4 Time Complexity
We have recorded the average execution time of all the
comparison methods under the distribution shift conditions.
The experiments of computational time are conducted on
the Windows 10 operating system, Intel(R) Core(TM) i7-
8700 CPU @3.20 GHz, 500G Solid State Drives, 16 GB DDR3
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Fig. 10: Convergence evaluation of the proposed CADM scheme. Dur-
ing the iterative optimization and adaptation, the MMD between the
source and target domains can be minimized, while the MMD between
the cover and stego classes can be maximized.

TABLE 7: Execution Time of Comparison Methods on the 75-
U→ 85-ns Dataset under the Distribution Shift Conditions

Method SRNet-NA GSL IMFA THFSL ACFL MPSA Ours
Runtime (s) 749.2 1783.8 1967.1 1479.3 1186.8 1251.0 1036.4

RAM, MATLAB R2020a and Nvidia Titan X Pascal GPU.
The experimental results on the 75-U → 85-ns mismatched
datasets with the imbalanced ratio of 1:10 and the embed-
ding rate of 0.3 bpnzac are reported in Table 7. From the
experimental results, it can be seen that the calculation time
of our proposed CADM is less than or roughly equal to
the other compared methods, except for the no adapta-
tion method (i.e., SRNet-NA). Therefore, it can address the
problem of cross-domain steganalysis within a reasonable
range of running time. In addition, to further reduce time
complexity, we can deploy and execute a parallel computing
architecture for our solution on advanced software and
hardware resources.

6 CONCLUSION

In this paper, we present an automatic distribution matching
scheme based on consensus clustering to realize the recog-
nition of cross-domain steganographic modifications. The
main conclusions can be drawn from this research work as
follows: 1) an effective SCFCM clustering can fully exploit
both the correlation and complementarity from the original
mismatched data, which provides a critical guidance to
capture intrinsic structural relationships in steganography
detection across domains; 2) the cluster consensus matching
is designed from the perspective of intra-domain and inter-
domain to guarantee that the distribution gaps are adap-
tively filled to promote the quality of steganalysis features,
which can be extended to enhance the signal-to-noise ratio
for researchers in other related fields, such as image forgery
detection and localization; 3) this work offers a new perspec-
tive that the cycle-consistent optimization and adaptation
can be leveraged to further boost the overall performance
via encouraging a collaboration between the source and
target clusters in cross-domain steganalysis; and 4) com-
prehensive experiments show that our proposed CADM
is more applicable for steganography detection scenarios
where the distributions are not aligned, and can automat-
ically perform the distribution matching through consensus
clustering to mitigate the risk of negative transfer. In the
near future, we are planning to study the cluster consensus
and cooperation mechanism that can accurately and rapidly
explore structure representations to achieve the fine-grained
matching for cross-domain steganalysis tasks.
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